A327082
BII-numbers of set-systems with cut-connectivity 2.
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850
Offset: 1
The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
256: {{1,4}}
257: {{1},{1,4}}
384: {{4},{1,4}}
385: {{1},{4},{1,4}}
512: {{2,4}}
514: {{2},{2,4}}
640: {{4},{2,4}}
642: {{2},{4},{2,4}}
The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.
BII-numbers for non-spanning edge-connectivity 2 are
A327097.
BII-numbers for spanning edge-connectivity 2 are
A327108.
The cut-connectivity 1 version is
A327098.
The cut-connectivity > 1 version is
A327101.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==2&]
A327101
BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1
The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Positions of numbers >= 2 in
A326786.
2-cut-connected graphs are counted by
A013922, if we assume
A013922(2) = 0.
2-cut-connected integer partitions are counted by
A322387.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are
A327102.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
The labeled cut-connectivity triangle is
A327125, with unlabeled version
A327127.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]
A327113
Number of set-systems covering n vertices with cut-connectivity 2.
Original entry on oeis.org
0, 0, 4, 0, 4752
Offset: 0
The a(2) = 4 set-systems:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Covering graphs with cut-connectivity >= 2 are
A013922, if we assume
A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are
A275307, if we assume
A275307(1) = 0.
2-vertex-connected integer partitions are
A322387.
Connected covering set-systems are
A323818.
Covering set-systems with cut-connectivity >= 2 are
A327112.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are
A327082.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]
A327197
Number of set-systems covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 1, 0, 24, 1984
Offset: 0
The a(3) = 24 set-systems:
{12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{2}{12}{13} {1}{3}{12}{13}
{2}{12}{23} {1}{3}{12}{23}
{2}{13}{23} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{3}{13}{23} {2}{3}{13}{23}
The BII-numbers of these set-systems are
A327098.
The same for cut-connectivity 2 is
A327113.
The non-covering version is
A327128.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
A327198
Number of labeled simple graphs covering n vertices with vertex-connectivity 2.
Original entry on oeis.org
0, 0, 0, 1, 9, 212, 9600, 789792, 114812264, 29547629568, 13644009626400, 11489505388892800, 17918588321874717312, 52482523149603539181312, 292311315623259148521270784, 3129388799344153886272170009600, 64965507855114369076680860799267840
Offset: 0
Cf.
A005644,
A013922,
A052442,
A259862,
A326786,
A327082,
A327101,
A327112,
A327113,
A327126,
A327227.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==2&]],{n,0,5}]
A327350
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 9, 5, 2, 0, 114, 84, 44, 17, 0, 6894, 6348, 4983, 3141, 1451, 0, 7785062
Offset: 0
Triangle begins:
1
1 0
2 1 0
9 5 2 0
114 84 44 17 0
6894 6348 4983 3141 1451 0
The antichains counted in row n = 3:
{123} {123} {123}
{1}{23} {12}{13} {12}{13}{23}
{2}{13} {12}{23}
{3}{12} {13}{23}
{12}{13} {12}{13}{23}
{12}{23}
{13}{23}
{1}{2}{3}
{12}{13}{23}
Column k = n - 1 is
A327020 (cointersecting antichains).
Negated first differences of rows are
A327351.
BII-numbers of antichains are
A326704.
Cf.
A003465,
A014466,
A120338,
A293606,
A293993,
A319639,
A323818,
A327112,
A327125,
A327334,
A327336,
A327352,
A327356,
A327357,
A327358.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
A327128
Number of set-systems with n vertices whose edge-set has cut-connectivity 1.
Original entry on oeis.org
0, 1, 2, 27, 2084
Offset: 0
The BII-numbers of these set-systems are
A327098.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327113,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]
A327356
Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 40, 1365
Offset: 0
Non-isomorphic representatives of the a(4) = 40 set-systems:
{{1,2},{1,3,4}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
{{1,2},{1,3},{1,4},{2,3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A327436
Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).
Original entry on oeis.org
0, 0, 1, 1, 4, 29
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
{12} {12}{13} {12}{134} {12}{1345}
{12}{13}{14} {123}{145}
{12}{13}{24} {12}{13}{145}
{12}{13}{14}{23} {12}{13}{245}
{13}{24}{125}
{13}{124}{125}
{14}{123}{235}
{12}{13}{14}{15}
{12}{13}{14}{25}
{12}{13}{24}{35}
{12}{13}{14}{235}
{12}{13}{23}{145}
{12}{13}{45}{234}
{12}{14}{23}{135}
{12}{15}{134}{234}
{15}{23}{124}{134}
{15}{123}{124}{134}
{15}{123}{124}{234}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{15}{24}{34}
{12}{13}{14}{15}{234}
{12}{13}{14}{25}{234}
{12}{13}{14}{15}{23}{24}
{12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{15}{123}{124}{134}{234}
{12}{13}{14}{15}{23}{24}{34}
Cf.
A006602,
A014466,
A048143,
A261005,
A326704,
A326786,
A327112,
A327114,
A327426,
A327334,
A327336,
A327350,
A327351,
A327358.
Showing 1-9 of 9 results.
Comments