cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A327125 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.

Examples

			Triangle begins:
    1
    0   1
    1   0   1
    4   3   0   1
   26  28   9   0   1
  296 490 212  25   0   1
		

Crossrefs

After the first column, same as A327126.
The unlabeled version is A327127.
Row sums are A006125.
Column k = 0 is A054592, if we assume A054592(0) = 1.
Column k = 1 is A327114, if we assume A327114(1) = 1.
Row sums without the first column are A001187.
Row sums without the first two columns are A013922.
Different from A327069.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]

Extensions

a(21)-a(28) from Robert Price, May 20 2021
a(1) and a(2) corrected by Robert Price, May 20 2021

A052443 Number of simple unlabeled n-node graphs of connectivity 2.

Original entry on oeis.org

0, 0, 1, 2, 7, 39, 332, 4735, 113176, 4629463, 327695586, 40525166511, 8850388574939, 3453378695335727, 2435485662537561705, 3137225298932374490227, 7448146273273417700880931, 32837456713651735794742705141, 270528237651574516777595556494978, 4186091025846007046878947026003803389
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=2 of A259862.
The labeled version is A327198.
2-vertex-connected graphs are A013922.

Programs

Formula

a(n) = A002218(n) - A006290(n) for n > 2. - Andrew Howroyd, Sep 04 2019

Extensions

Name clarified and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(2)-a(3) corrected by Andrew Howroyd, Aug 28 2019
a(12)-a(20) from Andrew Howroyd, Sep 04 2019

A327082 BII-numbers of set-systems with cut-connectivity 2.

Original entry on oeis.org

4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity (A326786, A327237), of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex and no edges has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:
    4: {{1,2}}
    5: {{1},{1,2}}
    6: {{2},{1,2}}
    7: {{1},{2},{1,2}}
   16: {{1,3}}
   17: {{1},{1,3}}
   24: {{3},{1,3}}
   25: {{1},{3},{1,3}}
   32: {{2,3}}
   34: {{2},{2,3}}
   40: {{3},{2,3}}
   42: {{2},{3},{2,3}}
  256: {{1,4}}
  257: {{1},{1,4}}
  384: {{4},{1,4}}
  385: {{1},{4},{1,4}}
  512: {{2,4}}
  514: {{2},{2,4}}
  640: {{4},{2,4}}
  642: {{2},{4},{2,4}}
The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.
		

Crossrefs

Positions of 2's in A326786.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity 2 are A327108.
The cut-connectivity 1 version is A327098.
The cut-connectivity > 1 version is A327101.
Covering 2-cut-connected set-systems are counted by A327112.
Covering set-systems with cut-connectivity 2 are counted by A327113.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==2&]

A327102 BII-numbers of set-systems with non-spanning edge-connectivity >= 2.

Original entry on oeis.org

5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system has non-spanning 2-edge-connectivity >= 2 if it is connected and any single edge can be removed (along with any non-covered vertices) without making the set-system disconnected or empty. Alternatively, these are connected set-systems whose bridges (edges whose removal disconnects the set-system or leaves isolated vertices) are all endpoints (edges intersecting only one other edge).

Examples

			The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  56: {{3},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by A322395.
Also positions of terms >=2 in A326787.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity >= 2 are A327109.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]>=2&]

A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.

Original entry on oeis.org

0, 0, 4, 72, 29856
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			Non-isomorphic representatives of the a(3) = 72 set-systems:
  {{123}}
  {{3}{123}}
  {{23}{123}}
  {{2}{3}{123}}
  {{1}{23}{123}}
  {{3}{23}{123}}
  {{12}{13}{23}}
  {{13}{23}{123}}
  {{1}{2}{3}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{23}{123}}
  {{3}{12}{13}{23}}
  {{2}{13}{23}{123}}
  {{3}{13}{23}{123}}
  {{12}{13}{23}{123}}
  {{1}{2}{3}{23}{123}}
  {{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering 2-cut-connected graphs are A013922, if we assume A013922(2) = 1.
Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0.
Covering 2-cut-connected antichains (blobs) are A275307, if we assume A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are A327113.
2-vertex-connected integer partitions are A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are A327101.
The cut-connectivity of the set-system with BII-number n is A326786(n).

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]

A327113 Number of set-systems covering n vertices with cut-connectivity 2.

Original entry on oeis.org

0, 0, 4, 0, 4752
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Covering graphs with cut-connectivity >= 2 are A013922, if we assume A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are A275307, if we assume A275307(1) = 0.
2-vertex-connected integer partitions are A322387.
Connected covering set-systems are A323818.
Covering set-systems with cut-connectivity >= 2 are A327112.
The cut-connectivity of the set-system with BII-number n is A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are A327082.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]

A327197 Number of set-systems covering n vertices with cut-connectivity 1.

Original entry on oeis.org

0, 1, 0, 24, 1984
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain in a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity.

Examples

			The a(3) = 24 set-systems:
  {12}{13}  {1}{12}{13}  {1}{2}{12}{13}  {1}{2}{3}{12}{13}
  {12}{23}  {1}{12}{23}  {1}{2}{12}{23}  {1}{2}{3}{12}{23}
  {13}{23}  {1}{13}{23}  {1}{2}{13}{23}  {1}{2}{3}{13}{23}
            {2}{12}{13}  {1}{3}{12}{13}
            {2}{12}{23}  {1}{3}{12}{23}
            {2}{13}{23}  {1}{3}{13}{23}
            {3}{12}{13}  {2}{3}{12}{13}
            {3}{12}{23}  {2}{3}{12}{23}
            {3}{13}{23}  {2}{3}{13}{23}
		

Crossrefs

The BII-numbers of these set-systems are A327098.
The same for cut-connectivity 2 is A327113.
The non-covering version is A327128.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327128.

A327198 Number of labeled simple graphs covering n vertices with vertex-connectivity 2.

Original entry on oeis.org

0, 0, 0, 1, 9, 212, 9600, 789792, 114812264, 29547629568, 13644009626400, 11489505388892800, 17918588321874717312, 52482523149603539181312, 292311315623259148521270784, 3129388799344153886272170009600, 64965507855114369076680860799267840
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Crossrefs

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==2&]],{n,0,5}]

Formula

a(n) = A013922(n) - A005644(n) for n >= 3. - Andrew Howroyd, Dec 26 2020

Extensions

Terms a(6) and beyond from Andrew Howroyd, Dec 26 2020

A327128 Number of set-systems with n vertices whose edge-set has cut-connectivity 1.

Original entry on oeis.org

0, 1, 2, 27, 2084
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. We define the cut-connectivity (A326786, A327237, A327126) of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039, A327040), this is the same as vertex-connectivity (A327334, A327051).

Crossrefs

The covering version is A327197.
The BII-numbers of these set-systems are A327098.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]

Formula

Binomial transform of A327197.
Showing 1-9 of 9 results.