cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A327098 BII-numbers of set-systems with cut-connectivity 1.

Original entry on oeis.org

1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
We define the cut-connectivity (A326786, A327237), of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex and no edges has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   8: {{3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  36: {{1,2},{2,3}}
  37: {{1},{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  39: {{1},{2},{1,2},{2,3}}
  44: {{1,2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  48: {{1,3},{2,3}}
		

Crossrefs

A subset of A326749.
Positions of 1's in A326786.
BII-numbers for cut-connectivity 2 are A327082.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity 1 are A327111.
Integer partitions with cut-connectivity 1 are counted by A322390.
Labeled connected separable graphs are counted by A327114.
Connected separable set-systems are counted by A327197.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]

A327114 Number of labeled simple graphs covering n vertices with cut-connectivity 1.

Original entry on oeis.org

0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

The cut-connectivity of a graph is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty graph.

Crossrefs

Column k = 1 of A327126.
The unlabeled version is A052442, if we assume A052442(2) = 0.
Connected non-separable graphs are A013922.
BII-numbers for cut-connectivity 1 are A327098.
Set-systems with cut-connectivity 1 are counted by A327197.
Labeled simple graphs with vertex-connectivity 1 are A327336.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
  • PARI
    seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

a(n) = A001187(n) - A013922(n), if we assume A001187(1) = 0.

A327229 Number of set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 4, 50, 3069, 2521782, 412169726428, 4132070622008664529903, 174224571863520492185852863478334475199686, 133392486801388257127953774730008469744261637221272599199572772174870315402893538
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The non-covering version is A327228.
The specialization to simple graphs is A327227.
The unlabeled version is A327230.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,3}]

Formula

Inverse binomial transform of A327228.

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327230 Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 3, 14, 198
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum vertex-degree 1.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
  {{1}}  {{1,2}}      {{1,2,3}}
         {{1},{2}}    {{1},{2,3}}
         {{2},{1,2}}  {{1},{2},{3}}
                      {{1,3},{2,3}}
                      {{3},{1,2,3}}
                      {{1},{3},{2,3}}
                      {{2,3},{1,2,3}}
                      {{2},{1,3},{2,3}}
                      {{2},{3},{1,2,3}}
                      {{3},{1,3},{2,3}}
                      {{1},{2},{3},{2,3}}
                      {{3},{2,3},{1,2,3}}
                      {{2},{3},{1,3},{2,3}}
                      {{2},{3},{2,3},{1,2,3}}
		

Crossrefs

Unlabeled covering set-systems are A055621.
The labeled version is A327229.
The non-covering version is A327335 (partial sums).

A327127 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A graph with one vertex and no edges is considered to be connected. Except for complete graphs, this is the same as vertex-connectivity (A259862).
There are two ways to define (vertex) connectivity: the minimum size of a vertex cut, and the minimum of the maximum number of internally disjoint paths between two distinct vertices. For non-complete graphs they coincide, which is tremendously useful. For complete graphs with at least 2 vertices, there are no cuts but the second method still works so it is customary to use it to justify the connectivity of K_n being n-1. - Brendan McKay, Aug 28 2019.

Examples

			Triangle begins:
   1
   0  1
   1  0  1
   2  1  0  1
   5  3  2  0  1
  13 11  7  2  0  1
		

Crossrefs

Row sums are A000088.
Column k = 0 is A000719, if we assume A000719(0) = 1.
Column k = 1 is A052442, if we assume A052442(1) = 1 and A052442(2) = 0.
The labeled version is A327125.
A more standard version (zeros removed) is A259862.

A327228 Number of set-systems with n vertices and at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 6, 65, 3297, 2537672, 412184904221, 4132070624893905681577, 174224571863520492218909428465944685216436, 133392486801388257127953774730008469745829658368044283629394202488602260177922751
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also set-systems with minimum covered vertex-degree 1.

Examples

			The a(2) = 6 set-systems:
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The covering version is A327229.
The specialization to simple graphs is A245797.
BII-numbers of these set-systems are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,4}]

Formula

Binomial transform of A327229.
a(n) = A058891(n+1) - A330059(n). - Andrew Howroyd, Jan 21 2023

Extensions

Terms a(5) and beyond from Andrew Howroyd, Jan 21 2023

A327335 Number of non-isomorphic set-systems with n vertices and at least one endpoint/leaf.

Original entry on oeis.org

0, 1, 4, 18, 216
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also covering set-systems with minimum covered vertex-degree 1.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 18 set-systems:
  {{1}}  {{1}}        {{1}}
         {{1,2}}      {{1,2}}
         {{1},{2}}    {{1},{2}}
         {{1},{1,2}}  {{1,2,3}}
                      {{1},{1,2}}
                      {{1},{2,3}}
                      {{1},{1,2,3}}
                      {{1,2},{1,3}}
                      {{1},{2},{3}}
                      {{1,2},{1,2,3}}
                      {{1},{2},{1,3}}
                      {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{2},{1,2,3}}
                      {{1},{1,2},{1,2,3}}
                      {{1},{2},{3},{1,2}}
                      {{1},{2},{1,2},{1,3}}
                      {{1},{2},{1,2},{1,2,3}}
		

Crossrefs

Unlabeled set-systems are A000612.
The labeled version is A327228.
The covering version is A327230 (first differences).

A327128 Number of set-systems with n vertices whose edge-set has cut-connectivity 1.

Original entry on oeis.org

0, 1, 2, 27, 2084
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. We define the cut-connectivity (A326786, A327237, A327126) of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039, A327040), this is the same as vertex-connectivity (A327334, A327051).

Crossrefs

The covering version is A327197.
The BII-numbers of these set-systems are A327098.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]

Formula

Binomial transform of A327197.
Showing 1-8 of 8 results.