A327098
BII-numbers of set-systems with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1
The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
36: {{1,2},{2,3}}
37: {{1},{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
48: {{1,3},{2,3}}
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity 1 are
A327111.
Integer partitions with cut-connectivity 1 are counted by
A322390.
Labeled connected separable graphs are counted by
A327114.
Connected separable set-systems are counted by
A327197.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]
A327114
Number of labeled simple graphs covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0
Connected non-separable graphs are
A013922.
BII-numbers for cut-connectivity 1 are
A327098.
Set-systems with cut-connectivity 1 are counted by
A327197.
Labeled simple graphs with vertex-connectivity 1 are
A327336.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
-
seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019
A327229
Number of set-systems covering n vertices with at least one endpoint/leaf.
Original entry on oeis.org
0, 1, 4, 50, 3069, 2521782, 412169726428, 4132070622008664529903, 174224571863520492185852863478334475199686, 133392486801388257127953774730008469744261637221272599199572772174870315402893538
Offset: 0
The a(2) = 4 set-systems:
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The non-covering version is
A327228.
The specialization to simple graphs is
A327227.
BII-numbers of these set-systems are
A327105.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,3}]
A327230
Number of non-isomorphic set-systems covering n vertices with at least one endpoint/leaf.
Original entry on oeis.org
0, 1, 3, 14, 198
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 set-systems:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1,2}} {{1},{2},{3}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{3},{2,3}}
{{2,3},{1,2,3}}
{{2},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{3},{2,3},{1,2,3}}
{{2},{3},{1,3},{2,3}}
{{2},{3},{2,3},{1,2,3}}
Unlabeled covering set-systems are
A055621.
The non-covering version is
A327335 (partial sums).
A327127
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0
Triangle begins:
1
0 1
1 0 1
2 1 0 1
5 3 2 0 1
13 11 7 2 0 1
A more standard version (zeros removed) is
A259862.
A327228
Number of set-systems with n vertices and at least one endpoint/leaf.
Original entry on oeis.org
0, 1, 6, 65, 3297, 2537672, 412184904221, 4132070624893905681577, 174224571863520492218909428465944685216436, 133392486801388257127953774730008469745829658368044283629394202488602260177922751
Offset: 0
The a(2) = 6 set-systems:
{{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The specialization to simple graphs is
A245797.
BII-numbers of these set-systems are
A327105.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,4}]
A327335
Number of non-isomorphic set-systems with n vertices and at least one endpoint/leaf.
Original entry on oeis.org
0, 1, 4, 18, 216
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 18 set-systems:
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1,2,3}}
{{1},{1,2}}
{{1},{2,3}}
{{1},{1,2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1,2},{1,2,3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,2},{1,2,3}}
The covering version is
A327230 (first differences).
A327128
Number of set-systems with n vertices whose edge-set has cut-connectivity 1.
Original entry on oeis.org
0, 1, 2, 27, 2084
Offset: 0
The BII-numbers of these set-systems are
A327098.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327113,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]
Showing 1-8 of 8 results.
Comments