A259862
Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 3, 2, 1;
13, 11, 7, 2, 1;
44, 56, 39, 13, 3, 1;
191, 385, 332, 111, 21, 3, 1;
1229, 3994, 4735, 2004, 345, 34, 4, 1;
13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1;
288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
...
Columns k=0..10 (up to initial nonzero terms) are
A000719,
A052442,
A052443,
A052444,
A052445,
A324234,
A324235,
A324088,
A324089,
A324090,
A324091.
A327334
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 26, 28, 9, 1, 0, 296, 490, 212, 25, 1, 0, 6064, 15336, 9600, 1692, 75, 1, 0, 230896, 851368, 789792, 210140, 14724, 231, 1, 0
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 1 0
26 28 9 1 0
296 490 212 25 1 0
Row sums without the first two columns are
A013922, if we assume
A013922(1) = 0.
Spanning edge-connectivity is
A327069.
Non-spanning edge-connectivity is
A327148.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==k&]],{n,0,5},{k,0,n}]
A327125
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0
Triangle begins:
1
0 1
1 0 1
4 3 0 1
26 28 9 0 1
296 490 212 25 0 1
After the first column, same as
A327126.
Row sums without the first column are
A001187.
Row sums without the first two columns are
A013922.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327126
Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with cut-connectivity k.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 0, 1, 3, 28, 9, 0, 1, 40, 490, 212, 25, 0, 1, 745, 15336, 9600, 1692, 75, 0, 1
Offset: 0
Triangle begins:
1
0 0
0 0 1
0 3 0 1
3 28 9 0 1
40 490 212 25 0 1
After the first column, same as
A327125.
Row sums without the first two columns are
A013922.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327101
BII-numbers of 2-cut-connected set-systems (cut-connectivity >= 2).
Original entry on oeis.org
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107
Offset: 1
The sequence of all 2-cut-connected set-systems together with their BII-numbers begins:
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
53: {{1},{1,2},{1,3},{2,3}}
54: {{2},{1,2},{1,3},{2,3}}
55: {{1},{2},{1,2},{1,3},{2,3}}
60: {{1,2},{3},{1,3},{2,3}}
61: {{1},{1,2},{3},{1,3},{2,3}}
62: {{2},{1,2},{3},{1,3},{2,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
Positions of numbers >= 2 in
A326786.
2-cut-connected graphs are counted by
A013922, if we assume
A013922(2) = 0.
2-cut-connected integer partitions are counted by
A322387.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
BII-numbers for non-spanning edge-connectivity >= 2 are
A327102.
BII-numbers for spanning edge-connectivity >= 2 are
A327109.
Covering 2-cut-connected set-systems are counted by
A327112.
Covering set-systems with cut-connectivity 2 are counted by
A327113.
The labeled cut-connectivity triangle is
A327125, with unlabeled version
A327127.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]
A327237
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices that, if the isolated vertices are removed, have cut-connectivity k.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 3, 3, 1, 4, 40, 15, 4, 1, 56, 660, 267, 35, 5, 1, 1031, 18756, 11022, 1862, 90, 6, 1
Offset: 0
Triangle begins:
1
1 0
1 0 1
1 3 3 1
4 40 15 4 1
56 660 267 35 5 1
Row sums without the first column are
A287689.
Cf.
A006125,
A001187,
A013922,
A259862,
A322389,
A326786,
A327070,
A327114,
A327125,
A327127,
A327198.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Union@@#,#]==k&]],{n,0,4},{k,0,n}]
A327805
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 4, 2, 1, 0, 11, 6, 3, 1, 0, 34, 21, 10, 3, 1, 0, 156, 112, 56, 17, 4, 1, 0, 1044, 853, 468, 136, 25, 4, 1, 0, 12346, 11117, 7123, 2388, 384, 39, 5, 1, 0, 274668, 261080, 194066, 80890, 14480, 1051, 59, 5, 1, 0, 12005168, 11716571, 9743542, 5114079, 1211735, 102630, 3211, 87, 6, 1, 0
Offset: 0
Triangle begins:
1
1 0
2 1 0
4 2 1 0
11 6 3 1 0
34 21 10 3 1 0
The covering case is
A327365, from which this sequence differs only in the k = 0 column.
Column k = 2 is
A002218 (2-connected graphs), if we assume
A002218(2) = 0.
The triangle for vertex-connectivity exactly k is
A259862.
A327234
Smallest BII-number of a set-system with cut-connectivity n.
Original entry on oeis.org
0, 1, 4, 52, 2868
Offset: 0
The sequence of terms together with their corresponding set-systems:
0: {}
1: {{1}}
4: {{1,2}}
52: {{1,2},{1,3},{2,3}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
The same for spanning edge-connectivity is
A327147.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
Cf.
A000120,
A002450,
A029931,
A048793,
A070939,
A259862,
A326031,
A327082,
A327098,
A327125,
A327126,
A327127,
A327373.
A327363
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity >= k.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 8, 4, 1, 0, 64, 38, 10, 1, 0, 1024, 728, 238, 26, 1, 0
Offset: 0
Triangle begins:
1
1 0
2 1 0
8 4 1 0
64 38 10 1 0
1024 728 238 26 1 0
Row-wise partial sums of
A327334 (vertex-connectivity exactly k).
-
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
Showing 1-9 of 9 results.
Comments