A327125
Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and cut-connectivity k.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 26, 28, 9, 0, 1, 296, 490, 212, 25, 0, 1, 6064, 15336, 9600, 1692, 75, 0, 1, 230896
Offset: 0
Triangle begins:
1
0 1
1 0 1
4 3 0 1
26 28 9 0 1
296 490 212 25 0 1
After the first column, same as
A327126.
Row sums without the first column are
A001187.
Row sums without the first two columns are
A013922.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A327098
BII-numbers of set-systems with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 128, 260, 261, 262, 263, 272, 273, 276, 277, 278, 279, 280, 281, 284, 285, 286, 287, 292, 293, 294, 295, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309
Offset: 1
The sequence of all set-systems with cut-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
36: {{1,2},{2,3}}
37: {{1},{1,2},{2,3}}
38: {{2},{1,2},{2,3}}
39: {{1},{2},{1,2},{2,3}}
44: {{1,2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
48: {{1,3},{2,3}}
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for non-spanning edge-connectivity 1 are
A327099.
BII-numbers for spanning edge-connectivity 1 are
A327111.
Integer partitions with cut-connectivity 1 are counted by
A322390.
Labeled connected separable graphs are counted by
A327114.
Connected separable set-systems are counted by
A327197.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
Select[Range[0,100],vertConnSys[bpe/@bpe[#]]==1&]
A327114
Number of labeled simple graphs covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 0, 0, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040
Offset: 0
Connected non-separable graphs are
A013922.
BII-numbers for cut-connectivity 1 are
A327098.
Set-systems with cut-connectivity 1 are counted by
A327197.
Labeled simple graphs with vertex-connectivity 1 are
A327336.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
-
seq(n)={my(g=log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))); Vec(serlaplace(g-intformal(1+log(x/serreverse(x*deriv(g))))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019
A327336
Number of labeled simple graphs with vertex-connectivity 1.
Original entry on oeis.org
0, 0, 1, 3, 28, 490, 15336, 851368, 85010976, 15615858960, 5388679220480, 3548130389657216, 4507988483733389568, 11145255551131555572992, 53964198507018134569758720, 514158235191699333805861463040, 9672967865350359173180572164444160
Offset: 0
The a(2) = 1 through a(4) = 28 edge-sets:
{12} {12,13} {12,13,14}
{12,23} {12,13,24}
{13,23} {12,13,34}
{12,14,23}
{12,14,34}
{12,23,24}
{12,23,34}
{12,24,34}
{13,14,23}
{13,14,24}
{13,23,24}
{13,23,34}
{13,24,34}
{14,23,24}
{14,23,34}
{14,24,34}
{12,13,14,23}
{12,13,14,24}
{12,13,14,34}
{12,13,23,24}
{12,13,23,34}
{12,14,23,24}
{12,14,24,34}
{12,23,24,34}
{13,14,23,34}
{13,14,24,34}
{13,23,24,34}
{14,23,24,34}
Connected non-separable graphs are
A013922.
Set-systems with vertex-connectivity 1 are
A327128.
Labeled simple graphs with cut-connectivity 1 are
A327114.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]==1&]],{n,0,4}]
A327127
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices where k is the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 2, 0, 1, 13, 11, 7, 2, 0, 1
Offset: 0
Triangle begins:
1
0 1
1 0 1
2 1 0 1
5 3 2 0 1
13 11 7 2 0 1
A more standard version (zeros removed) is
A259862.
Showing 1-5 of 5 results.
Comments