cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A284825 Number of partitions of n into 3 parts without common divisors such that every pair of them has common divisors.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 5, 0, 0, 0, 1, 0, 5, 0, 1, 0, 6, 0, 6, 0, 0, 0, 4, 0, 6, 0, 0, 0, 9, 0, 2, 1, 2, 0, 9, 0, 8, 1, 1, 0, 5, 0, 14, 0, 1, 0, 15, 0, 14, 0, 0, 1, 14, 0, 14, 0, 2, 0, 15, 0, 6, 1, 2, 1, 11, 0, 18, 1, 1, 0, 10, 0, 23
Offset: 31

Views

Author

Alois P. Heinz, Apr 03 2017

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A014612 (triples), A289509 (relatively prime), and A337694 (pairwise non-coprime). - Gus Wiseman, Oct 16 2020

Examples

			a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(41) = 2: [6,14,21], [6,15,20].
From _Gus Wiseman_, Oct 14 2020: (Start)
Selected terms and the corresponding triples:
  a(31)=1: a(41)=2: a(59)=3:  a(77)=4:  a(61)=5:  a(71)=6:
-------------------------------------------------------------
  15,10,6  20,15,6  24,20,15  39,26,12  33,22,6   39,26,6
           21,14,6  24,21,14  42,20,15  40,15,6   45,20,6
                    35,14,10  45,20,12  45,10,6   50,15,6
                              50,15,12  28,21,12  35,21,15
                                        36,15,10  36,20,15
                                                  36,21,14
(End)
		

Crossrefs

A023023 does not require pairwise non-coprimality, with strict case A101271.
A202425 and A328672 count these partitions of any length, ranked by A328868.
A284825*6 is the ordered version.
A307719 is the pairwise coprime instead of non-coprime version.
A337599 does not require relatively primality, with strict case A337605.
A200976 and A328673 count pairwise non-coprime partitions.
A289509 gives Heinz numbers of relatively prime partitions.
A327516 counts pairwise coprime partitions, ranked by A333227.
A337694 gives Heinz numbers of pairwise non-coprime partitions.

Programs

  • Maple
    a:= proc(n) option remember; add(add(`if`(igcd(i, j)>1
          and igcd(i, j, n-i-j)=1 and igcd(i, n-i-j)>1 and
          igcd(j, n-i-j)>1, 1, 0), j=i..(n-i)/2), i=2..n/3)
        end:
    seq(a(n), n=31..137);
  • Mathematica
    a[n_] := a[n] = Sum[Sum[If[GCD[i, j] > 1 && GCD[i, j, n - i - j] == 1 && GCD[i, n - i - j] > 1 && GCD[j, n - i - j] > 1, 1, 0], {j, i, (n - i)/2} ], {i, 2, n/3}];
    Table[a[n], {n, 31, 137}] (* Jean-François Alcover, Jun 13 2018, from Maple *)
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&&stabQ[#,CoprimeQ]&]],{n,31,100}] (* Gus Wiseman, Oct 14 2020 *)

Formula

a(n) > 0 iff n in { A230035 }.
a(n) = 0 iff n in { A230034 }.

A337604 Number of ordered triples of positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 6, 105, 46, 120, 21, 181, 6, 153, 67, 189, 12, 262, 6, 213, 118, 231, 12, 337, 21, 306, 121, 303, 12, 433, 57, 369, 154, 378, 18, 583, 30, 435, 217, 465
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

The first relatively prime triple (15,10,6) is counted under a(31).

Examples

			The a(6) = 1 through a(15) = 7 triples (empty columns indicated by dots, A = 10):
  222  .  224  333  226  .  228  .  22A  339
          242       244     246     248  366
          422       262     264     266  393
                    424     282     284  555
                    442     336     2A2  636
                    622     363     428  663
                            426     446  933
                            444     464
                            462     482
                            624     626
                            633     644
                            642     662
                            822     824
                                    842
                                    A22
		

Crossrefs

A014311 intersected with A337666 ranks these compositions.
A337667 counts these compositions of any length.
A335402 lists the positions of zeros.
A337461 is the coprime instead of non-coprime version.
A337599 is the unordered version, with strict case A337605.
A337605*6 is the strict version.
A000741 counts relatively prime 3-part compositions.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-relatively prime partitions.
A307719 counts pairwise coprime 3-part partitions.
A318717 counts pairwise non-coprime strict partitions.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]

A337667 Number of compositions of n where any two parts have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

First differs from A178472 at a(31) = 7, a(31) = 1.

Examples

			The a(2) = 1 through a(10) = 17 compositions (A = 10):
   2   3   4    5   6     7   8      9     A
           22       24        26     36    28
                    33        44     63    46
                    42        62     333   55
                    222       224          64
                              242          82
                              422          226
                              2222         244
                                           262
                                           424
                                           442
                                           622
                                           2224
                                           2242
                                           2422
                                           4222
                                           22222
		

Crossrefs

A101268 = 1 + A337462 is the pairwise coprime version.
A328673 = A200976 + 1 is the unordered version.
A337604 counts these compositions of length 3.
A337666 ranks these compositions.
A337694 gives Heinz numbers of the unordered version.
A337983 is the strict case.
A051185 counts intersecting set-systems, with spanning case A305843.
A318717 is the unordered strict case.
A319786 is the version for factorizations, with strict case A318749.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]

A302568 Odd numbers that are either prime or whose prime indices are pairwise coprime.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 77, 79, 83, 85, 89, 93, 95, 97, 101, 103, 107, 109, 113, 119, 123, 127, 131, 137, 139, 141, 143, 145, 149, 151, 155, 157, 161, 163, 165, 167, 173, 177, 179
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

Also Heinz numbers of partitions with pairwise coprime parts all greater than 1 (A007359), where singletons are considered coprime. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}       43: {14}      89: {24}      141: {2,15}
      5: {3}       47: {15}      93: {2,11}    143: {5,6}
      7: {4}       51: {2,7}     95: {3,8}     145: {3,10}
     11: {5}       53: {16}      97: {25}      149: {35}
     13: {6}       55: {3,5}    101: {26}      151: {36}
     15: {2,3}     59: {17}     103: {27}      155: {3,11}
     17: {7}       61: {18}     107: {28}      157: {37}
     19: {8}       67: {19}     109: {29}      161: {4,9}
     23: {9}       69: {2,9}    113: {30}      163: {38}
     29: {10}      71: {20}     119: {4,7}     165: {2,3,5}
     31: {11}      73: {21}     123: {2,13}    167: {39}
     33: {2,5}     77: {4,5}    127: {31}      173: {40}
     35: {3,4}     79: {22}     131: {32}      177: {2,17}
     37: {12}      83: {23}     137: {33}      179: {41}
     41: {13}      85: {3,7}    139: {34}      181: {42}
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
03: {{1}}
05: {{2}}
07: {{1,1}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
23: {{2,2}}
29: {{1,3}}
31: {{5}}
33: {{1},{3}}
35: {{2},{1,1}}
37: {{1,1,2}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
53: {{1,1,1,1}}
		

Crossrefs

A005117 is a superset.
A007359 counts partitions with these Heinz numbers.
A302569 allows evens, with squarefree version A302798.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A337984 does not include the primes.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,400,2],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]

Formula

Equals A065091 \/ A337984.
Equals A302569 /\ A005408.

Extensions

Extended by Gus Wiseman, Oct 29 2020

A337694 Numbers with no two relatively prime prime indices.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 183, 185, 189, 191, 193, 197, 199
Offset: 1

Views

Author

Gus Wiseman, Sep 23 2020

Keywords

Comments

First differs from A305078 in having 1 and lacking 195.
First differs from A305103 in having 1 and 169 and lacking 195.
First differs from A328336 in lacking 897, with prime indices (2,6,9).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions in which no two parts are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}      37: {12}     79: {22}      121: {5,5}
   3: {2}     39: {2,6}    81: {2,2,2,2} 125: {3,3,3}
   5: {3}     41: {13}     83: {23}      127: {31}
   7: {4}     43: {14}     87: {2,10}    129: {2,14}
   9: {2,2}   47: {15}     89: {24}      131: {32}
  11: {5}     49: {4,4}    91: {4,6}     133: {4,8}
  13: {6}     53: {16}     97: {25}      137: {33}
  17: {7}     57: {2,8}   101: {26}      139: {34}
  19: {8}     59: {17}    103: {27}      147: {2,4,4}
  21: {2,4}   61: {18}    107: {28}      149: {35}
  23: {9}     63: {2,2,4} 109: {29}      151: {36}
  25: {3,3}   65: {3,6}   111: {2,12}    157: {37}
  27: {2,2,2} 67: {19}    113: {30}      159: {2,16}
  29: {10}    71: {20}    115: {3,9}     163: {38}
  31: {11}    73: {21}    117: {2,2,6}   167: {39}
		

Crossrefs

A200976 and A328673 count these partitions.
A302696 and A302569 are pairwise coprime instead of pairwise non-coprime.
A318719 is the squarefree case.
A328867 looks at distinct prime indices.
A337666 is the version for standard compositions.
A101268 counts pairwise coprime or singleton compositions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337667 counts pairwise non-coprime compositions.

Programs

  • Maple
    filter:= proc(n) local F,i,j,np;
      if n::even and n>2 then return false fi;
      F:= map(t -> numtheory:-pi(t[1]), ifactors(n)[2]);
      np:= nops(F);
      for i from 1 to np-1 do
        for j from i+1 to np do
          if igcd(F[i],F[j])=1 then return false fi
      od od;
      true
    end proc:
    select(filter, [$1..300]); # Robert Israel, Oct 06 2020
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Select[Range[100],stabQ[primeMS[#],CoprimeQ]&]

A337984 Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.

Original entry on oeis.org

15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}     155: {3,11}     265: {3,16}
     33: {2,5}     161: {4,9}      287: {4,13}
     35: {3,4}     165: {2,3,5}    291: {2,25}
     51: {2,7}     177: {2,17}     295: {3,17}
     55: {3,5}     187: {5,7}      309: {2,27}
     69: {2,9}     201: {2,19}     323: {7,8}
     77: {4,5}     205: {3,13}     327: {2,29}
     85: {3,7}     209: {5,8}      329: {4,15}
     93: {2,11}    215: {3,14}     335: {3,19}
     95: {3,8}     217: {4,11}     341: {5,11}
    119: {4,7}     219: {2,21}     355: {3,20}
    123: {2,13}    221: {6,7}      381: {2,31}
    141: {2,15}    249: {2,23}     385: {3,4,5}
    143: {5,6}     253: {5,9}      391: {7,9}
    145: {3,10}    255: {2,3,7}    395: {3,22}
		

Crossrefs

A005117 is a superset.
A337485 counts these partitions.
A302568 considers singletons to be coprime.
A304711 allows 1's, with squarefree version A302797.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by A335235.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions, ranked by A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version A318717 ranked by A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&CoprimeQ@@PrimePi/@First/@FactorInteger[#]&]

Formula

A337695 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

34, 40, 69, 70, 81, 88, 98, 104, 130, 138, 139, 141, 142, 160, 162, 163, 168, 177, 184, 197, 198, 209, 216, 226, 232, 260, 261, 262, 274, 276, 277, 278, 279, 282, 283, 285, 286, 288, 290, 296, 321, 324, 325, 326, 327, 328, 337, 344, 352, 354, 355, 360, 369
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
     34: (4,2)        163: (2,4,1,1)    277: (4,2,2,1)
     40: (2,4)        168: (2,2,4)      278: (4,2,1,2)
     69: (4,2,1)      177: (2,1,4,1)    279: (4,2,1,1,1)
     70: (4,1,2)      184: (2,1,1,4)    282: (4,1,2,2)
     81: (2,4,1)      197: (1,4,2,1)    283: (4,1,2,1,1)
     88: (2,1,4)      198: (1,4,1,2)    285: (4,1,1,2,1)
     98: (1,4,2)      209: (1,2,4,1)    286: (4,1,1,1,2)
    104: (1,2,4)      216: (1,2,1,4)    288: (3,6)
    130: (6,2)        226: (1,1,4,2)    290: (3,4,2)
    138: (4,2,2)      232: (1,1,2,4)    296: (3,2,4)
    139: (4,2,1,1)    260: (6,3)        321: (2,6,1)
    141: (4,1,2,1)    261: (6,2,1)      324: (2,4,3)
    142: (4,1,1,2)    262: (6,1,2)      325: (2,4,2,1)
    160: (2,6)        274: (4,3,2)      326: (2,4,1,2)
    162: (2,4,2)      276: (4,2,3)      327: (2,4,1,1,1)
		

Crossrefs

A304712 counts the complement, with ordered version A337664.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335238 does not consider a singleton coprime unless it is (1).
A337600 counts 3-part partitions in the complement.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A337461 counts pairwise coprime 3-part compositions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337666 ranks pairwise non-coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(SameQ@@stc[#]||CoprimeQ@@Union[stc[#]])&]

A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Number of pairwise non-coprime strict compositions of n.

Examples

			The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
  2  3  4  5  6   7  8   9   A   B  C    D  E    F
              24     26  36  28     2A      2C   3C
              42     62  63  46     39      4A   5A
                             64     48      68   69
                             82     84      86   96
                                    93      A4   A5
                                    A2      C2   C3
                                    246     248
                                    264     284
                                    426     428
                                    462     482
                                    624     824
                                    642     842
		

Crossrefs

A318717 is the unordered version.
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A337667 is the non-strict version, ranked by A337666.
A337696 ranks these compositions.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 are the unordered version.
A233564 ranks strict compositions.
A318749 is the version for factorizations, with non-strict version A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]

A337987 Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 93, 95, 99, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 205, 207, 209, 215, 217, 219, 221, 225, 245, 249, 253, 255, 265, 275, 279, 287, 291, 295, 297, 309, 323, 327, 329, 335, 341, 355, 363, 369
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of integer partitions with no 1's whose distinct parts are pairwise coprime (A338315). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     15: {2,3}      135: {2,2,2,3}    215: {3,14}
     33: {2,5}      141: {2,15}       217: {4,11}
     35: {3,4}      143: {5,6}        219: {2,21}
     45: {2,2,3}    145: {3,10}       221: {6,7}
     51: {2,7}      153: {2,2,7}      225: {2,2,3,3}
     55: {3,5}      155: {3,11}       245: {3,4,4}
     69: {2,9}      161: {4,9}        249: {2,23}
     75: {2,3,3}    165: {2,3,5}      253: {5,9}
     77: {4,5}      175: {3,3,4}      255: {2,3,7}
     85: {3,7}      177: {2,17}       265: {3,16}
     93: {2,11}     187: {5,7}        275: {3,3,5}
     95: {3,8}      201: {2,19}       279: {2,2,11}
     99: {2,2,5}    205: {3,13}       287: {4,13}
    119: {4,7}      207: {2,2,9}      291: {2,25}
    123: {2,13}     209: {5,8}        295: {3,17}
		

Crossrefs

A304711 is the not necessarily odd version, with squarefree case A302797.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A337984 is the squarefree case.
A338315 counts the partitions with these Heinz numbers.
A338316 considers singletons coprime.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's, with Heinz numbers A302568.
A304709 counts partitions whose distinct parts are pairwise coprime.
A327516 counts pairwise coprime partitions, with Heinz numbers A302696.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by A333228.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.
A318717 counts pairwise non-coprime strict partitions, with Heinz numbers A318719.

Programs

  • Mathematica
    Select[Range[1,100,2],CoprimeQ@@Union[PrimePi/@First/@FactorInteger[#]]&]

A338315 Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 2, 4, 4, 10, 6, 15, 13, 16, 21, 31, 29, 43, 41, 50, 63, 79, 81, 99, 113, 129, 145, 179, 197, 228, 249, 284, 328, 363, 418, 472, 522, 581, 655, 741, 828, 921, 1008, 1123, 1259, 1407, 1546, 1709, 1889, 2077, 2292, 2554, 2799, 3061, 3369
Offset: 0

Views

Author

Gus Wiseman, Oct 23 2020

Keywords

Comments

The Heinz numbers of these partitions are given by A337987. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11):
  32   .  43    53    54     73     65      75      76
          52    332   72     433    74      543     85
          322         522    532    83      552     94
                      3222   3322   92      732     A3
                                    443     5322    B2
                                    533     33222   544
                                    722             553
                                    3332            733
                                    5222            922
                                    32222           4333
                                                    5332
                                                    7222
                                                    33322
                                                    52222
                                                    322222
		

Crossrefs

A200976 is a pairwise non-coprime instead of pairwise coprime version.
A304709 allows 1's, with strict case A305713 and Heinz numbers A304711.
A318717 counts pairwise non-coprime strict partitions.
A337485 is the strict version, with Heinz numbers A337984.
A337987 gives the Heinz numbers of these partitions.
A338317 considers singletons coprime, with Heinz numbers A338316.
A007359 counts singleton or pairwise coprime partitions with no 1's.
A327516 counts pairwise coprime partitions, ranked by A302696.
A328673 counts partitions with no two distinct parts relatively prime.
A337462 counts pairwise coprime compositions, ranked by A333227.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337667 counts pairwise non-coprime compositions, ranked by A337666.
A337697 counts pairwise coprime compositions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}]
Showing 1-10 of 13 results. Next