A337667
Number of compositions of n where any two parts have a common divisor > 1.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0
The a(2) = 1 through a(10) = 17 compositions (A = 10):
2 3 4 5 6 7 8 9 A
22 24 26 36 28
33 44 63 46
42 62 333 55
222 224 64
242 82
422 226
2222 244
262
424
442
622
2224
2242
2422
4222
22222
A337604 counts these compositions of length 3.
A337694 gives Heinz numbers of the unordered version.
A318717 is the unordered strict case.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]
A337984
Heinz numbers of pairwise coprime integer partitions with no 1's, where a singleton is not considered coprime.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 201, 205, 209, 215, 217, 219, 221, 249, 253, 255, 265, 287, 291, 295, 309, 323, 327, 329, 335, 341, 355, 381, 385, 391, 395, 403, 407, 411, 413, 415, 437, 447, 451, 465
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 155: {3,11} 265: {3,16}
33: {2,5} 161: {4,9} 287: {4,13}
35: {3,4} 165: {2,3,5} 291: {2,25}
51: {2,7} 177: {2,17} 295: {3,17}
55: {3,5} 187: {5,7} 309: {2,27}
69: {2,9} 201: {2,19} 323: {7,8}
77: {4,5} 205: {3,13} 327: {2,29}
85: {3,7} 209: {5,8} 329: {4,15}
93: {2,11} 215: {3,14} 335: {3,19}
95: {3,8} 217: {4,11} 341: {5,11}
119: {4,7} 219: {2,21} 355: {3,20}
123: {2,13} 221: {6,7} 381: {2,31}
141: {2,15} 249: {2,23} 385: {3,4,5}
143: {5,6} 253: {5,9} 391: {7,9}
145: {3,10} 255: {2,3,7} 395: {3,22}
A302568 considers singletons to be coprime.
A337694 is the pairwise non-coprime instead of pairwise coprime version.
A007359 counts partitions into singleton or pairwise coprime parts with no 1's
A101268 counts pairwise coprime or singleton compositions, ranked by
A335235.
A305713 counts pairwise coprime strict partitions.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A337983 counts pairwise non-coprime strict compositions, with unordered version
A318717 ranked by
A318719.
Cf.
A051424,
A056239,
A087087,
A112798,
A200976,
A220377,
A302569,
A303140,
A303282,
A328673,
A328867.
A337696
Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 512: (10) 2304: (3,9)
2: (2) 514: (8,2) 2560: (2,10)
4: (3) 520: (6,4) 2568: (2,6,4)
8: (4) 544: (4,6) 2592: (2,4,6)
16: (5) 640: (2,8) 4096: (13)
32: (6) 1024: (11) 8192: (14)
34: (4,2) 2048: (12) 8194: (12,2)
40: (2,4) 2050: (10,2) 8200: (10,4)
64: (7) 2052: (9,3) 8224: (8,6)
128: (8) 2056: (8,4) 8226: (8,4,2)
130: (6,2) 2082: (6,4,2) 8232: (8,2,4)
160: (2,6) 2088: (6,2,4) 8320: (6,8)
256: (9) 2176: (4,8) 8704: (4,10)
260: (6,3) 2178: (4,6,2) 8706: (4,8,2)
288: (3,6) 2208: (4,2,6) 8832: (4,2,8)
A318719 gives the Heinz numbers of the unordered version, with non-strict version
A337694.
A337667 counts the non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case
A319786.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A333227 ranks pairwise coprime compositions, or
A335235 if singletons are considered coprime.
-
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
A335236 ranks compositions neither a singleton nor pairwise coprime.
-
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
-
A337666 ranks the non-strict version.
Cf.
A082024,
A101268,
A302797,
A305713,
A319752,
A327040,
A327516,
A336737,
A337599,
A337604,
A337605.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]
A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
Showing 1-4 of 4 results.
Comments