A343338
Numbers with no prime index dividing or divisible by all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 203: {4,10}
15: {2,3} 119: {4,7} 205: {3,13}
33: {2,5} 123: {2,13} 207: {2,2,9}
35: {3,4} 135: {2,2,2,3} 209: {5,8}
45: {2,2,3} 141: {2,15} 215: {3,14}
51: {2,7} 143: {5,6} 217: {4,11}
55: {3,5} 145: {3,10} 219: {2,21}
69: {2,9} 153: {2,2,7} 221: {6,7}
75: {2,3,3} 155: {3,11} 225: {2,2,3,3}
77: {4,5} 161: {4,9} 231: {2,4,5}
85: {3,7} 165: {2,3,5} 245: {3,4,4}
91: {4,6} 175: {3,3,4} 247: {6,8}
93: {2,11} 177: {2,17} 249: {2,23}
95: {3,8} 187: {5,7} 253: {5,9}
99: {2,2,5} 201: {2,19} 255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
The first condition alone gives
A342193.
The second condition alone gives
A343337.
The partitions with these Heinz numbers are counted by
A343342.
The opposite version is the complement of
A343343.
A000070 counts partitions with a selected part.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A130689,
A338470,
A339562,
A341450,
A343341,
A343346,
A343347,
A343348,
A343377,
A343379,
A343382.
A338315
Number of integer partitions of n with no 1's whose distinct parts are pairwise coprime, where a singleton is not considered coprime unless it is (1).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 3, 2, 4, 4, 10, 6, 15, 13, 16, 21, 31, 29, 43, 41, 50, 63, 79, 81, 99, 113, 129, 145, 179, 197, 228, 249, 284, 328, 363, 418, 472, 522, 581, 655, 741, 828, 921, 1008, 1123, 1259, 1407, 1546, 1709, 1889, 2077, 2292, 2554, 2799, 3061, 3369
Offset: 0
The a(5) = 1 through a(13) = 15 partitions (empty column indicated by dot, A = 10, B = 11):
32 . 43 53 54 73 65 75 76
52 332 72 433 74 543 85
322 522 532 83 552 94
3222 3322 92 732 A3
443 5322 B2
533 33222 544
722 553
3332 733
5222 922
32222 4333
5332
7222
33322
52222
322222
A200976 is a pairwise non-coprime instead of pairwise coprime version.
A318717 counts pairwise non-coprime strict partitions.
A337987 gives the Heinz numbers of these partitions.
A007359 counts singleton or pairwise coprime partitions with no 1's.
A328673 counts partitions with no two distinct parts relatively prime.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime.
A337697 counts pairwise coprime compositions with no 1's.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@Union[#]&]],{n,0,30}]
A338316
Odd numbers whose distinct prime indices are pairwise coprime, where a singleton is always considered coprime.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 95, 97, 99, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 131, 135, 137, 139, 141, 143, 145, 149, 151
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 33: {2,5} 71: {20}
3: {2} 35: {3,4} 73: {21}
5: {3} 37: {12} 75: {2,3,3}
7: {4} 41: {13} 77: {4,5}
9: {2,2} 43: {14} 79: {22}
11: {5} 45: {2,2,3} 81: {2,2,2,2}
13: {6} 47: {15} 83: {23}
15: {2,3} 49: {4,4} 85: {3,7}
17: {7} 51: {2,7} 89: {24}
19: {8} 53: {16} 93: {2,11}
23: {9} 55: {3,5} 95: {3,8}
25: {3,3} 59: {17} 97: {25}
27: {2,2,2} 61: {18} 99: {2,2,5}
29: {10} 67: {19} 101: {26}
31: {11} 69: {2,9} 103: {27}
A338315 does not consider singletons coprime, with Heinz numbers
A337987.
A338317 counts the partitions with these Heinz numbers.
A337694 is a pairwise non-coprime instead of pairwise coprime version.
A007359 counts singleton or pairwise coprime partitions with no 1's, with Heinz numbers
A302568.
A101268 counts pairwise coprime or singleton compositions, ranked by
A335235.
A302797 lists squarefree numbers whose distinct parts are pairwise coprime.
A304709 counts partitions whose distinct parts are pairwise coprime, with Heinz numbers
A304711.
A337485 counts pairwise coprime partitions with no 1's, with Heinz numbers
A337984.
A337561 counts pairwise coprime strict compositions.
A337665 counts compositions whose distinct parts are pairwise coprime, ranked by
A333228.
A337697 counts pairwise coprime compositions with no 1's.
A338317
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
Offset: 0
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
A200976 (
A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (
A328867) gives partitions with no distinct relatively prime parts.
A337485 (
A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (
A333228) gives compositions with pairwise coprime distinct parts.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&(SameQ@@#||CoprimeQ@@Union[#])&]],{n,0,15}]
Showing 1-4 of 4 results.
Comments