A002494 Number of n-node graphs without isolated nodes.
1, 0, 1, 2, 7, 23, 122, 888, 11302, 262322, 11730500, 1006992696, 164072174728, 50336940195360, 29003653625867536, 31397431814147073280, 63969589218557753586160, 245871863137828405125824848, 1787331789281458167615194471072, 24636021675399858912682459613241920
Offset: 0
Examples
From _Gus Wiseman_, Aug 02 2018: (Start) Non-isomorphic representatives of the a(4) = 7 graphs: (12)(34) (12)(13)(14) (12)(13)(24) (12)(13)(14)(23) (12)(13)(24)(34) (12)(13)(14)(23)(24) (12)(13)(14)(23)(24)(34) (End)
References
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
- W. L. Kocay, Some new methods in reconstruction theory, Combinatorial Mathematics IX, 952 (1982) 89--114. [From Benoit Jubin, Sep 06 2008]
- W. L. Kocay, On reconstructing spanning subgraphs, Ars Combinatoria, 11 (1981) 301--313. [From Benoit Jubin, Sep 06 2008]
- J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-435; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..75 (using A000088)
- P. C. Fishburn and W. V. Gehrlein, Niche numbers, J. Graph Theory, 16 (1992), 131-139.
- R. J. Mathar, Illustrations (2023)
- J. H. Redfield, The theory of group-reduced distributions [Annotated scan of pages 452 and 453 only]
- Eric Weisstein's World of Mathematics, Isolated Point.
- Eric Weisstein's World of Mathematics, Graphical Partition
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Crossrefs
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2) +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])), add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) end: a:= n-> b(n$2, [])-`if`(n>0, b(n-1$2, []), 0): seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Mathematica
<< MathWorld`Graphs` Length /@ (gp = Select[ #, GraphicalPartitionQ] & /@ Graphs /@ Range[9]) nn = 20; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[ g (1 - x), {x, 0, nn}], x] (*Geoffrey Critzer, Apr 14 2012*) sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]]; sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]]; Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]==2&]],Union@@#==Range[n]&]]],{n,6}] (* Gus Wiseman, Aug 02 2018 *) b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1)/2] + Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]; a[n_] := b[n, n, {}] - If[n > 0, b[n-1, n-1, {}], 0]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
-
Python
from itertools import combinations from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A002494(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n))-sum(Fraction(1< >1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 03 2024
Formula
O.g.f.: (1-x)*G(x) where G(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 14 2012
Extensions
More terms from Vladeta Jovovic, Apr 10 2000
a(0) added from David W. Wilson, Aug 24 2008
Comments