cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 107 results. Next

A003465 Number of ways to cover an n-set.

Original entry on oeis.org

1, 1, 5, 109, 32297, 2147321017, 9223372023970362989, 170141183460469231667123699502996689125, 57896044618658097711785492504343953925273862865136528166133547991141168899281
Offset: 0

Views

Author

Keywords

Comments

Let S be an n-element set, and let P be the set of all nonempty subsets of S. Then a(n) = number of subsets of P whose union is S.
Including the empty set doubles the entries, and we get A000371.
For disjoint covers see A000110. - Manfred Boergens, May 13 2024
For disjoint covers which may include one empty set see A186021. - Manfred Boergens, Mar 09 2025

Examples

			Let n=2, S={a,b}, P={a,b,ab}. There are five subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}. - _Marc LeBrun_, Nov 10 2010
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.

Crossrefs

Cf. A007537, A000371, A055154 (row sums), A369950 (diagonal for n>=1), A055621 (unlabeled case).
Column sums of A326914 and of A326962.

Programs

  • Maple
    a:= n-> add((-1)^k * binomial(n, k)*2^(2^(n-k))/2, k=0..n):
    seq(a(n), n=0..11);  # Alois P. Heinz, Aug 24 2014
  • Mathematica
    Table[Sum[(-1)^j Binomial[n,j] 2^(2^(n-j)-1),{j,0,n}],{n,0,10}] (* Geoffrey Critzer, Jun 26 2013 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^k * n!/k!/(n-k)! * 2^(2^(n-k))) / 2} /* Michael Somos, Jun 14 1999 */

Formula

a(n) = Sum_{k>=0} (-1)^k * binomial(n, k) * 2^(2^(n-k)) / 2. - Michael Somos, Jun 14 1999
E.g.f.: (1/2)*Sum_{n>=0} exp((2^n-1)*x)*log(2)^n/n!. - Vladeta Jovovic, May 30 2004
a(n) ~ 2^(2^n - 1). - Vaclav Kotesovec, Jul 02 2016

Extensions

More terms and comments from Michael Somos
Entry revised by N. J. A. Sloane, Nov 23 2010

A000612 Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2.

Original entry on oeis.org

1, 2, 6, 40, 1992, 18666624, 12813206169137152, 33758171486592987164087845043830784, 1435913805026242504952006868879460423834904914948818373264705576411070464
Offset: 0

Views

Author

Keywords

Comments

Also number of nonisomorphic sets of nonempty subsets of an n-set.
Equivalently, number of nonisomorphic fillings of a Venn diagram of n sets. - Joerg Arndt, Mar 24 2020
Number of hypergraphs on n unlabeled nodes. - Charles R Greathouse IV, Apr 06 2021

Examples

			Non-isomorphic representatives of the a(2) = 6 set-systems are 0, {1}, {12}, {1}{2}, {1}{12}, {1}{2}{12}. - _Gus Wiseman_, Aug 07 2018
		

References

  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 153.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 Table 2.3.2. - Row 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= n-> add(1/(p-> mul((c-> j^c*c!)(coeff(p, x, j)), j=1..degree(p)))(
            add(x^i, i=l))*2^((w-> add(mul(2^igcd(t, l[i]), i=1..nops(l)),
            t=1..w)/w)(ilcm(l[]))), l=combinat[partition](n))/2:
    seq(a(n), n=0..9);  # Alois P. Heinz, Aug 12 2019
  • Mathematica
    sysnorm[{}] := {};sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Subsets[Rest[Subsets[Range[n]]]]]],{n,4}] (* Gus Wiseman, Aug 07 2018 *)
    a[n_] := Sum[1/Function[p, Product[Function[c, j^c*c!][Coefficient[p, x, j]], {j, 1, Exponent[p, x]}]][Total[x^l]]*2^(Function[w, Sum[Product[2^GCD[t, l[[i]]], {i, 1, Length[l]}], {t, 1, w}]/w][If[l=={}, 1, LCM @@ l]]), {l, IntegerPartitions[n]}]/2;
    a /@ Range[0, 9] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz *)
  • Python
    def partition(n, I=1):
      yield () if n==0 else (n,)
      for i in range(I, n//2 + 1):
        for p in partition(n-i, i):
          yield (i,) + p
    def a(n):
      import math, operator, functools
      fracs = [(1<<(sum(functools.reduce(operator.mul, (1<Gregory Morse, Dec 23 2024

Formula

a(n) = A003180(n)/2.

Extensions

More terms from Vladeta Jovovic, Feb 23 2000

A002494 Number of n-node graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 7, 23, 122, 888, 11302, 262322, 11730500, 1006992696, 164072174728, 50336940195360, 29003653625867536, 31397431814147073280, 63969589218557753586160, 245871863137828405125824848, 1787331789281458167615194471072, 24636021675399858912682459613241920
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled simple graphs covering n vertices. - Gus Wiseman, Aug 02 2018

Examples

			From _Gus Wiseman_, Aug 02 2018: (Start)
Non-isomorphic representatives of the a(4) = 7 graphs:
  (12)(34)
  (12)(13)(14)
  (12)(13)(24)
  (12)(13)(14)(23)
  (12)(13)(24)(34)
  (12)(13)(14)(23)(24)
  (12)(13)(14)(23)(24)(34)
(End)
		

References

  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • W. L. Kocay, Some new methods in reconstruction theory, Combinatorial Mathematics IX, 952 (1982) 89--114. [From Benoit Jubin, Sep 06 2008]
  • W. L. Kocay, On reconstructing spanning subgraphs, Ars Combinatoria, 11 (1981) 301--313. [From Benoit Jubin, Sep 06 2008]
  • J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-435; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals first differences of A000088. Cf. A006129 (labeled), A001349 (connected, inv. Euler Transf).

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, [])-`if`(n>0, b(n-1$2, []), 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    << MathWorld`Graphs`
    Length /@ (gp = Select[ #, GraphicalPartitionQ] & /@
    Graphs /@ Range[9])
    nn = 20; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[ g (1 - x), {x, 0, nn}], x]  (*Geoffrey Critzer, Apr 14 2012*)
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]==2&]],Union@@#==Range[n]&]]],{n,6}] (* Gus Wiseman, Aug 02 2018 *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1)/2] + Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}] - If[n > 0, b[n-1, n-1, {}], 0];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A002494(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 03 2024

Formula

O.g.f.: (1-x)*G(x) where G(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 14 2012
a(n) = A327075(n)+A001349(n). - R. J. Mathar, Nov 21 2023

Extensions

More terms from Vladeta Jovovic, Apr 10 2000
a(0) added from David W. Wilson, Aug 24 2008

A367903 Number of sets of nonempty subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 67, 30997, 2147296425, 9223372036784737528, 170141183460469231731687303625772608225, 57896044618658097711785492504343953926634992332820282019728791606173188627779
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 1 set-system is {{1},{2},{1,2}}.
The a(3) = 67 set-systems have following 21 non-isomorphic representatives:
  {{1},{2},{1,2}}
  {{1},{2},{3},{1,2}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,2},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3}}
  {{1},{1,2},{1,3},{1,2,3}}
  {{1},{1,2},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3}}
  {{1},{2},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Multisets of multisets of this type are ranked by A355529.
The version without singletons is A367769.
The version for simple graphs is A367867, covering A367868.
The version allowing empty edges is A367901.
The complement is A367902, without singletons A367770, ranks A367906.
For a unique choice (instead of none) we have A367904, ranks A367908.
These set-systems have ranks A367907.
An unlabeled version is A368094, for multiset partitions A368097.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,3}]

Formula

a(n) + A367904(n) + A367772(n) = A058891(n+1) = 2^(2^n-1).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A367902 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 2, 7, 61, 1771, 187223, 70038280, 90111497503, 397783376192189
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 7 set-systems:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
		

Crossrefs

The version for simple graphs is A133686, covering A367869.
The version without singletons is A367770.
The complement allowing empty edges is A367901.
The complement is A367903, without singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#],UnsameQ@@#&]!={}&]],{n,0,3}]

Formula

a(n) = A370636(2^n-1). - Alois P. Heinz, Mar 09 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 25 2024

A367905 Number of ways to choose a sequence of different binary indices, one of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
		

Crossrefs

A version for multisets is A367771, see A355529, A355740, A355744, A355745.
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
Positions of first appearances are A367910, sorted A367911.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]],{n,0,100}]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(0):
            c = 0
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    c += 1
            yield c
    A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024

A367907 Numbers n such that it is not possible to choose a different binary index of each binary index of n.

Original entry on oeis.org

7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) contradicting a strict version of the axiom of choice.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence.
The terms together with the corresponding set-systems begin:
   7: {{1},{2},{1,2}}
  15: {{1},{2},{1,2},{3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  39: {{1},{2},{1,2},{2,3}}
  42: {{2},{3},{2,3}}
  43: {{1},{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

These set-systems are counted by A367903, non-isomorphic A368094.
Positions of zeros in A367905, firsts A367910, sorted A367911.
The complement is A367906.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x = len(p)
            for j in range(x):
                if len(set(p[j])) == len(p[j]): break
                if j+1 == x: yield(n)
    A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A300913 Number of non-isomorphic connected set-systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 18, 37, 96, 239, 658, 1810, 5358, 16057, 50373, 161811, 536964, 1826151, 6380481, 22822280, 83587920, 312954111, 1197178941, 4674642341, 18620255306, 75606404857, 312763294254, 1317356836235, 5646694922172, 24618969819915, 109125629486233, 491554330852608
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

The weight of a set-system is the sum of cardinalities of the sets. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1,2}}
3: {{1,2,3}}
   {{2},{1,2}}
4: {{1,2,3,4}}
   {{3},{1,2,3}}
   {{1,3},{2,3}}
   {{1},{2},{1,2}}
5: {{1,2,3,4,5}}
   {{4},{1,2,3,4}}
   {{1,4},{2,3,4}}
   {{2,3},{1,2,3}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{3},{1,3},{2,3}}
Non-isomorphic representatives of the a(6) = 18 connected set-systems:
  {{1,2,3,4,5,6}}
  {{5},{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1},{1,4},{2,3,4}}
  {{1},{2,3},{1,2,3}}
  {{3},{4},{1,2,3,4}}
  {{3},{1,4},{2,3,4}}
  {{3},{2,3},{1,2,3}}
  {{4},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

Formula

Inverse Euler transform of A283877.

Extensions

a(11)-a(31) from Jean-François Alcover, Nov 07 2019

A367906 Numbers k such that it is possible to choose a different binary index of each binary index of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice.
A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
		

Crossrefs

These set-systems are counted by A367902, non-isomorphic A368095.
Positions of positive terms in A367905, firsts A367910, sorted A367911.
The complement is A367907.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    yield(n); break
    A367906_list = list(islice(a_gen(),100)) # John Tyler Rascoe, Dec 23 2023

A293606 Number of unlabeled antichains of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 20, 33, 72, 139
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2017

Keywords

Comments

An antichain is a finite set of finite nonempty sets, none of which is a subset of any other. The weight of an antichain is the sum of cardinalities of its elements.
From Gus Wiseman, Aug 15 2019: (Start)
Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n where every vertex is the unique common element of some subset of the edges. For example, the a(1) = 1 through a(6) = 20 set multipartitions are:
{1} {1}{1} {1}{1}{1} {1}{2}{12} {1}{2}{2}{12} {12}{13}{23}
{1}{2} {1}{2}{2} {1}{1}{1}{1} {1}{2}{3}{23} {1}{2}{12}{12}
{1}{2}{3} {1}{1}{2}{2} {1}{1}{1}{1}{1} {1}{2}{13}{23}
{1}{2}{2}{2} {1}{1}{2}{2}{2} {1}{2}{3}{123}
{1}{2}{3}{3} {1}{2}{2}{2}{2} {1}{1}{2}{2}{12}
{1}{2}{3}{4} {1}{2}{2}{3}{3} {1}{1}{2}{3}{23}
{1}{2}{3}{3}{3} {1}{2}{2}{2}{12}
{1}{2}{3}{4}{4} {1}{2}{3}{3}{23}
{1}{2}{3}{4}{5} {1}{2}{3}{4}{34}
{1}{1}{1}{1}{1}{1}
{1}{1}{1}{2}{2}{2}
{1}{1}{2}{2}{2}{2}
{1}{1}{2}{2}{3}{3}
{1}{2}{2}{2}{2}{2}
{1}{2}{2}{3}{3}{3}
{1}{2}{3}{3}{3}{3}
{1}{2}{3}{3}{4}{4}
{1}{2}{3}{4}{4}{4}
{1}{2}{3}{4}{5}{5}
{1}{2}{3}{4}{5}{6}
(End)

Examples

			Non-isomorphic representatives of the a(5) = 9 antichains are:
((12345)),
((1)(2345)), ((12)(134)), ((12)(345)),
((1)(2)(345)), ((1)(23)(45)), ((2)(13)(14)),
((1)(2)(3)(45)),
((1)(2)(3)(4)(5)).
		

Crossrefs

Formula

Euler transform of A293607.
Showing 1-10 of 107 results. Next