A003465 Number of ways to cover an n-set.
1, 1, 5, 109, 32297, 2147321017, 9223372023970362989, 170141183460469231667123699502996689125, 57896044618658097711785492504343953925273862865136528166133547991141168899281
Offset: 0
Examples
Let n=2, S={a,b}, P={a,b,ab}. There are five subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}. - _Marc LeBrun_, Nov 10 2010
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..11
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- Martin Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
- Liwen Ma, Classification of coverings in the finite approximation spaces, Inf. Sci. 276 (2014) 31-41
- A. J. Macula, Covers of a finite set, Math. Mag., 67 (1994), 141-144.
- S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013).
- Eric Weisstein's World of Mathematics, Cover.
- Yoad Winter and Remko Scha, Plurals, draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics - second edition, edited by Shalom Lappin and Chris Fox, 2014.
- Ping Zhou, Covering rough sets based on neighborhoods: an approach without using neighborhoods, Int. J. Approx. Reas. 52 (2011) 461-472, Section 3
Crossrefs
Programs
-
Maple
a:= n-> add((-1)^k * binomial(n, k)*2^(2^(n-k))/2, k=0..n): seq(a(n), n=0..11); # Alois P. Heinz, Aug 24 2014
-
Mathematica
Table[Sum[(-1)^j Binomial[n,j] 2^(2^(n-j)-1),{j,0,n}],{n,0,10}] (* Geoffrey Critzer, Jun 26 2013 *)
-
PARI
{a(n) = sum(k=0, n, (-1)^k * n!/k!/(n-k)! * 2^(2^(n-k))) / 2} /* Michael Somos, Jun 14 1999 */
Formula
a(n) = Sum_{k>=0} (-1)^k * binomial(n, k) * 2^(2^(n-k)) / 2. - Michael Somos, Jun 14 1999
E.g.f.: (1/2)*Sum_{n>=0} exp((2^n-1)*x)*log(2)^n/n!. - Vladeta Jovovic, May 30 2004
a(n) ~ 2^(2^n - 1). - Vaclav Kotesovec, Jul 02 2016
Extensions
More terms and comments from Michael Somos
Entry revised by N. J. A. Sloane, Nov 23 2010
Comments