cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A330465 Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.

Original entry on oeis.org

1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2019

Keywords

Comments

Also inequivalent leaf-colorings of phylogenetic rooted trees with n labels. A phylogenetic rooted tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			Non-isomorphic representatives of the a(3) = 14 trees:
  ((1)((1)(1)))  ((1)((1)(2)))  ((1)((2)(3)))  ((2)((1)(1)))
  ((1)(1)(1))    ((1)(1)(2))    ((1)(2)(3))    ((2)(1,1))
  ((1)(1,1))     ((1)(1,2))     ((1)(2,3))
  (1,1,1)        (1,1,2)        (1,2,3)
		

Crossrefs

The version where leaves are atoms is A318231.
The case with sets as leaves is A330624.
The case with disjoint sets as leaves is A141268.
Labeled versions are A330467 (strongly normal) and A330469 (normal).
The singleton-reduced version is A330470.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 13 2020

A330467 Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			The a(3) = 18 trees:
  {1,1,1}          {1,1,2}          {1,2,3}
  {{1},{1,1}}      {{1},{1,2}}      {{1},{2,3}}
  {{1},{1},{1}}    {{2},{1,1}}      {{2},{1,3}}
  {{1},{{1},{1}}}  {{1},{1},{2}}    {{3},{1,2}}
                   {{1},{{1},{2}}}  {{1},{2},{3}}
                   {{2},{{1},{1}}}  {{1},{{2},{3}}}
                                    {{2},{{1},{3}}}
                                    {{3},{{1},{2}}}
		

Crossrefs

The singleton-reduced version is A316652.
The unlabeled version is A330465.
Not requiring weakly decreasing multiplicities gives A330469.
The case where the leaves are sets is A330625.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
    Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 28 2020

A330469 Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2019

Keywords

Comments

Also the number of different colorings of phylogenetic trees with n labels using a multiset of colors covering an initial interval of positive integers. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			The a(3) = 24 trees:
  (123)          (122)          (112)          (111)
  ((1)(23))      ((1)(22))      ((1)(12))      ((1)(11))
  ((2)(13))      ((2)(12))      ((2)(11))      ((1)(1)(1))
  ((3)(12))      ((1)(2)(2))    ((1)(1)(2))    ((1)((1)(1)))
  ((1)(2)(3))    ((1)((2)(2)))  ((1)((1)(2)))
  ((1)((2)(3)))  ((2)((1)(2)))  ((2)((1)(1)))
  ((2)((1)(3)))
  ((3)((1)(2)))
		

Crossrefs

The singleton-reduced version is A316651.
The unlabeled version is A330465.
The strongly normal case is A330467.
The case when leaves are sets is A330764.
Row sums of A330762.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
    amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
    Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
    seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 29 2019

A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(2) = 2 and a(3) = 6 multisystems:
  {1,1}  {{1},{1,1}}
  {1,2}  {{1},{1,2}}
         {{1},{2,3}}
         {{2},{1,1}}
         {{2},{1,3}}
         {{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
  {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
  {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
                 {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
                 {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
                 {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
                                {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
                                {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
                                               {{2}}{{3}{11}} {{2}}{{3}{14}}
                                               {{23}}{{1}{1}} {{23}}{{1}{4}}
                                               {{3}}{{1}{12}} {{2}}{{4}{13}}
                                               {{3}}{{2}{11}} {{24}}{{1}{3}}
                                                              {{3}}{{1}{24}}
                                                              {{3}}{{2}{14}}
                                                              {{3}}{{4}{12}}
                                                              {{34}}{{1}{2}}
                                                              {{4}}{{1}{23}}
                                                              {{4}}{{2}{13}}
                                                              {{4}}{{3}{12}}
		

Crossrefs

The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330475.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The (weakly) normal version is A330676.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of strongly normal multisets are A035310.
Series-reduced rooted trees with strongly normal leaves are A316652.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

A330624 Number of non-isomorphic series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n elements.

Original entry on oeis.org

1, 1, 3, 10, 61, 410, 3630
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2019

Keywords

Comments

A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 10 trees:
  {1}  {1,2}      {1,2,3}
       {{1},{1}}  {{1},{1,2}}
       {{1},{2}}  {{1},{2,3}}
                  {{1},{1},{1}}
                  {{1},{1},{2}}
                  {{1},{2},{3}}
                  {{1},{{1},{1}}}
                  {{1},{{1},{2}}}
                  {{1},{{2},{3}}}
                  {{2},{{1},{1}}}
		

Crossrefs

The version with multisets as leaves is A330465.
The singleton-reduced case is A330626.
A labeled version is A330625 (strongly normal).
The case with all atoms distinct is A141268.
The case where all leaves are singletons is A330470.

A330626 Number of non-isomorphic series/singleton-reduced rooted trees whose leaves are sets (not necessarily disjoint) with a total of n atoms.

Original entry on oeis.org

1, 1, 1, 3, 17, 100, 755
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 17 trees:
  {1}  {1,2}  {1,2,3}      {1,2,3,4}
              {{1},{1,2}}  {{1},{1,2,3}}
              {{1},{2,3}}  {{1,2},{1,2}}
                           {{1,2},{1,3}}
                           {{1},{2,3,4}}
                           {{1,2},{3,4}}
                           {{1},{1},{1,2}}
                           {{1},{1},{2,3}}
                           {{1},{2},{1,2}}
                           {{1},{2},{1,3}}
                           {{1},{2},{3,4}}
                           {{1},{{1},{1,2}}}
                           {{1},{{1},{2,3}}}
                           {{1},{{2},{1,2}}}
                           {{1},{{2},{1,3}}}
                           {{1},{{2},{3,4}}}
                           {{2},{{1},{1,3}}}
		

Crossrefs

The non-singleton-reduced version is A330624.
The generalization where leaves are multisets is A330470.
A labeled version is A330628 (strongly normal).
The case with all atoms distinct is A004114.
The balanced version is A330668.

A330628 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n whose leaves are sets (not necessarily disjoint).

Original entry on oeis.org

1, 1, 1, 5, 42, 423, 5458, 80926
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 42 trees:
  {{1}{1}{12}}    {{12}{12}}      {{1}{123}}      {1234}
  {{1}{{1}{12}}}  {{1}{2}{12}}    {{12}{13}}      {{1}{234}}
                  {{1}{{2}{12}}}  {{1}{1}{23}}    {{12}{34}}
                  {{2}{{1}{12}}}  {{1}{2}{13}}    {{13}{24}}
                                  {{1}{3}{12}}    {{14}{23}}
                                  {{1}{{1}{23}}}  {{2}{134}}
                                  {{1}{{2}{13}}}  {{3}{124}}
                                  {{1}{{3}{12}}}  {{4}{123}}
                                  {{2}{{1}{13}}}  {{1}{2}{34}}
                                  {{3}{{1}{12}}}  {{1}{3}{24}}
                                                  {{1}{4}{23}}
                                                  {{2}{3}{14}}
                                                  {{2}{4}{13}}
                                                  {{3}{4}{12}}
                                                  {{1}{{2}{34}}}
                                                  {{1}{{3}{24}}}
                                                  {{1}{{4}{23}}}
                                                  {{2}{{1}{34}}}
                                                  {{2}{{3}{14}}}
                                                  {{2}{{4}{13}}}
                                                  {{3}{{1}{24}}}
                                                  {{3}{{2}{14}}}
                                                  {{3}{{4}{12}}}
                                                  {{4}{{1}{23}}}
                                                  {{4}{{2}{13}}}
                                                  {{4}{{3}{12}}}
		

Crossrefs

The generalization where leaves are multisets is A330471.
The non-singleton-reduced version is A330625.
The unlabeled version is A330626.
The case with all atoms distinct is A000311.
Strongly normal multiset partitions are A035310.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
    Table[Sum[Length[Select[ssrtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]

A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 3, 8, 27, 94, 385, 1673, 8079, 41614, 231447, 1364697, 8559575, 56544465, 393485452, 2867908008, 21869757215, 173848026202, 1438593095272, 12360614782433, 110119783919367, 1015289796603359, 9674959683612989, 95147388659652754, 964559157655032720, 10067421615492769230
Offset: 0

Views

Author

Gus Wiseman, Jan 02 2020

Keywords

Comments

The (weakly) normal version is A116540.

Examples

			The a(1) = 1 through a(3) = 8 set multipartitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{1}}  {{1},{1,2}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
The a(4) = 27 set multipartitions:
  {{1},{1},{1},{1}}  {{1},{1},{1,2}}  {{1},{1,2,3}}  {{1,2,3,4}}
  {{1},{1},{1},{2}}  {{1},{1},{2,3}}  {{1,2},{1,2}}
  {{1},{1},{2},{2}}  {{1},{2},{1,2}}  {{1,2},{1,3}}
  {{1},{1},{2},{3}}  {{1},{2},{1,3}}  {{1},{2,3,4}}
  {{1},{2},{3},{4}}  {{1},{2},{3,4}}  {{1,2},{3,4}}
                     {{1},{3},{1,2}}  {{1,3},{2,4}}
                     {{1},{3},{2,4}}  {{1,4},{2,3}}
                     {{1},{4},{2,3}}  {{2},{1,3,4}}
                     {{2},{3},{1,4}}  {{3},{1,2,4}}
                     {{2},{4},{1,3}}  {{4},{1,2,3}}
                     {{3},{4},{1,2}}
		

Crossrefs

Allowing edges to be multisets gives is A035310.
The strict case is A318402.
The constant case is A000005.
The (weakly) normal version is A116540.
Unlabeled set multipartitions are A049311.
Set multipartitions of prime indices are A050320.
Set multipartitions of integer partitions are A089259.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@UnsameQ@@@#&]],{n,0,5}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020
Showing 1-8 of 8 results.