A330465
Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.
Original entry on oeis.org
1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1
Non-isomorphic representatives of the a(3) = 14 trees:
((1)((1)(1))) ((1)((1)(2))) ((1)((2)(3))) ((2)((1)(1)))
((1)(1)(1)) ((1)(1)(2)) ((1)(2)(3)) ((2)(1,1))
((1)(1,1)) ((1)(1,2)) ((1)(2,3))
(1,1,1) (1,1,2) (1,2,3)
The version where leaves are atoms is
A318231.
The case with sets as leaves is
A330624.
The case with disjoint sets as leaves is
A141268.
The singleton-reduced version is
A330470.
Cf.
A000311,
A000669,
A004114,
A005804,
A007716,
A281118,
A289501,
A292504,
A316651,
A316652,
A318812,
A319312,
A330471,
A330474,
A330625,
A339645.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020
A330470
Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
Original entry on oeis.org
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x:
(1111) (1112) (1122) (1123) (1234)
(1(111)) (1(112)) (1(122)) (1(123)) (1(234))
(11(11)) (11(12)) (11(22)) (11(23)) (12(34))
((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34))
(1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34)))
((11)(12)) (1(1(22))) (23(11))
(1(1(12))) ((12)(12)) ((11)(23))
(1(2(11))) (1(2(12))) (1(1(23)))
(2(1(11))) ((12)(13))
(1(2(13)))
(2(1(13)))
(2(3(11)))
The case with all atoms equal or all atoms different is
A000669.
Not requiring singleton-reduction gives
A330465.
Labeled versions are
A316651 (normal orderless) and
A330471 (strongly normal).
The case where the leaves are sets is
A330626.
Cf.
A000311,
A005121,
A005804,
A141268,
A213427,
A292504,
A292505,
A318812,
A318848,
A318849,
A330467,
A330469,
A330474,
A330624.
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)}
InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
A330467
Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 4, 18, 154, 1614, 23733, 396190, 8066984, 183930948, 4811382339, 138718632336, 4451963556127, 155416836338920, 5920554613563841, 242873491536944706, 10725017764009207613, 505671090907469848248, 25415190929321149684700, 1354279188424092012064226
Offset: 0
The a(3) = 18 trees:
{1,1,1} {1,1,2} {1,2,3}
{{1},{1,1}} {{1},{1,2}} {{1},{2,3}}
{{1},{1},{1}} {{2},{1,1}} {{2},{1,3}}
{{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}}
{{1},{{1},{2}}} {{1},{2},{3}}
{{2},{{1},{1}}} {{1},{{2},{3}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The singleton-reduced version is
A316652.
Not requiring weakly decreasing multiplicities gives
A330469.
The case where the leaves are sets is
A330625.
Cf.
A000311,
A000669,
A004114,
A005121,
A005804,
A141268,
A292504,
A292505,
A318812,
A318849,
A319312,
A330471,
A330475.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times];
amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}];
Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}]
-
\\ See links in A339645 for combinatorial species functions.
cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)}
StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 28 2020
A330676
Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0
The a(0) = 1 through a(3) = 8 multisystems:
{} {1} {1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330655.
The version where the atoms are the prime indices of n is
A330665.
The strongly normal version is
A330675.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
Cf.
A000669,
A001055,
A005121,
A005804,
A318812,
A330469,
A330474,
A330654,
A330664,
A330677,
A330679.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020
A330625
Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 3, 14, 123, 1330, 19694
Offset: 0
The a(1) = 1 through a(3) = 14 trees:
{1} {1,2} {1,2,3}
{{1},{1}} {{1},{1,2}}
{{1},{2}} {{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
{{1},{{1},{1}}}
{{1},{{1},{2}}}
{{1},{{2},{3}}}
{{2},{{1},{1}}}
{{2},{{1},{3}}}
{{3},{{1},{2}}}
The generalization where the leaves are multisets is
A330467.
The singleton-reduced case is
A330628.
The case with all atoms distinct is
A005804.
The case with all atoms equal is
A196545.
The case where all leaves are singletons is
A330471.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m];
Table[Sum[Length[Select[srtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
A330654
Number of series/singleton-reduced rooted trees on normal multisets of size n.
Original entry on oeis.org
1, 1, 2, 12, 112, 1444, 24099, 492434, 11913985
Offset: 0
The a(0) = 1 through a(3) = 12 trees:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The strongly normal case is
A330471.
The case with all atoms distinct is
A000311.
The case with all atoms equal is
A196545.
Normal multiset partitions are
A255906.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}]
A330627
Number of non-isomorphic phylogenetic trees with n nodes.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
1 12 123 1234 12345 123456 1234567 12345678
(1)(2) (1)(23) (1)(234) (1)(2345) (1)(23456)
(12)(34) (12)(345) (12)(3456)
(1)(2)(3) (1)(2)(34) (123)(456)
(1)((2)(3)) (1)(2)(345)
(1)(23)(45)
(1)((2)(34))
(1)(2)(3)(4)
(12)((3)(4))
Phylogenetic trees by number of labels are
A005804, with unlabeled version
A141268.
Balanced phylogenetic trees are
A320154.
Cf.
A000311,
A000669,
A001678,
A004114,
A005121,
A007716,
A048816,
A060356,
A330465,
A330467,
A330469.
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021
A330762
Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are multisets of colors with a total of n elements using exactly k colors.
Original entry on oeis.org
1, 2, 2, 4, 12, 8, 11, 67, 114, 58, 30, 376, 1230, 1496, 612, 96, 2174, 12038, 26156, 24570, 8374, 308, 12792, 113028, 389968, 630300, 481284, 140408, 1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906, 3648, 471260, 9574934, 70524256, 250201560, 479284952, 508811114, 282141552, 63830764
Offset: 1
Triangle begins:
1;
2, 2;
4, 12, 8;
11, 67, 114, 58;
30, 376, 1230, 1496, 612;
96, 2174, 12038, 26156, 24570, 8374;
308, 12792, 113028, 389968, 630300, 481284, 140408;
1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906;
...
The T(3,2) = 12 trees are: (122), (112), ((1)(22)), ((1)(12)), ((2)(12)), ((2)(11)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))).
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{ my(T=M(10)); for(n=1, #T~, print(T[n, 1..n])) }
A330764
Number of series-reduced rooted trees whose leaves are sets with a total of n elements covering an initial interval of positive integers.
Original entry on oeis.org
1, 3, 18, 194, 2944, 57959, 1398858, 39981994, 1320143478, 49439258516, 2070409961552, 95867076538834, 4863079990663528, 268198764863998103, 15977057268090388836, 1022415045656417706598, 69946606996018140613292, 5094427098628436561252367, 393558075509405403487404506
Offset: 1
The a(3) = 18 trees:
(123) ((1)(12)) ((1)(1)(1))
((1)(23)) ((2)(12)) ((1)((1)(1)))
((2)(13)) ((1)(2)(2))
((3)(12)) ((1)(1)(2))
((1)(2)(3)) ((1)((2)(2)))
((1)((2)(3))) ((1)((1)(2)))
((2)((1)(3))) ((2)((1)(2)))
((3)((1)(2))) ((2)((1)(1)))
Cf.
A330469 (leaves are multisets).
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k, n)]))[n])); v}
seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}
Showing 1-9 of 9 results.
Comments