A330655
Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 12, 138, 2652, 78106, 3256404, 182463296, 13219108288, 1202200963522, 134070195402644, 17989233145940910, 2858771262108762492, 530972857546678902490, 113965195745030648131036, 27991663753030583516229824, 7800669355870672032684666900, 2448021231611414334414904013956
Offset: 0
The a(0) = 1 through a(3) = 12 multisystems:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The strongly normal case is
A330475.
The case where the atoms are all different is
A005121.
The case where the atoms are all equal is
A318813.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2019
A330663
Number of non-isomorphic balanced reduced multisystems of weight n and maximum depth.
Original entry on oeis.org
1, 1, 2, 4, 20, 140, 1411
Offset: 0
Non-isomorphic representatives of the a(2) = 2 through a(4) = 20 multisystems:
{1,1} {{1},{1,1}} {{{1}},{{1},{1,1}}}
{1,2} {{1},{1,2}} {{{1,1}},{{1},{1}}}
{{1},{2,3}} {{{1}},{{1},{1,2}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}}
{{{1}},{{1},{2,2}}}
{{{1,1}},{{2},{2}}}
{{{1}},{{1},{2,3}}}
{{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,1}}}
{{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}}
{{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}}
{{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,1}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
{{{2,3}},{{1},{1}}}
The non-maximal version is
A330474.
The case where the leaves are sets (as opposed to multisets) is
A330677.
The case with all atoms distinct is
A000111.
The case with all atoms equal is (also)
A000111.
Cf.
A000311,
A004114,
A005121,
A006472,
A007716,
A048816,
A141268,
A306186,
A330470,
A330655,
A330664.
A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330475.
The version where the atoms are the prime indices of n is
A330665.
The (weakly) normal version is
A330676.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of strongly normal multisets are
A035310.
Series-reduced rooted trees with strongly normal leaves are
A316652.
Cf.
A000311,
A000669,
A001055,
A001678,
A005121,
A005804,
A316651,
A318812,
A330467,
A330474,
A330625,
A330628,
A330664,
A330677,
A330679.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330728
Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1
The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
11 {1}{12} {1}{23} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}}
{2}{11} {2}{13} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}}
{3}{12} {{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}}
{{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}}
{{2}}{{1}{12}} {{2}}{{1}{11}} {{1}}{{3}{12}}
{{2}}{{2}{11}} {{13}}{{1}{2}}
{{22}}{{1}{1}} {{2}}{{1}{13}}
{{2}}{{3}{11}}
{{23}}{{1}{1}}
{{3}}{{1}{12}}
{{3}}{{2}{11}}
The version with distinct atoms is
A006472.
The non-maximal version is
A318846.
Final terms in each row of
A330727.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330654
Number of series/singleton-reduced rooted trees on normal multisets of size n.
Original entry on oeis.org
1, 1, 2, 12, 112, 1444, 24099, 492434, 11913985
Offset: 0
The a(0) = 1 through a(3) = 12 trees:
{} {1} {1,1} {1,1,1}
{1,2} {1,1,2}
{1,2,2}
{1,2,3}
{{1},{1,1}}
{{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The strongly normal case is
A330471.
The case with all atoms distinct is
A000311.
The case with all atoms equal is
A196545.
Normal multiset partitions are
A255906.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}]
A330726
Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.
Original entry on oeis.org
1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
Offset: 0
The a(1) = 1 through a(5) = 17 multisystems (commas elided):
{1} {2} {3} {4} {5}
{11} {12} {22} {23}
{{1}{11}} {13} {14}
{{1}{12}} {{1}{13}}
{{2}{11}} {{1}{22}}
{{{1}}{{1}{11}}} {{2}{12}}
{{{11}}{{1}{1}}} {{3}{11}}
{{{1}}{{1}{12}}}
{{{11}}{{1}{2}}}
{{{1}}{{2}{11}}}
{{{12}}{{1}{1}}}
{{{2}}{{1}{11}}}
{{{{1}}}{{{1}}{{1}{11}}}}
{{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
The case with all atoms equal to 1 is
A000111.
The non-maximal version is
A330679.
Cf.
A000669,
A002846,
A005121,
A141268,
A196545,
A213427,
A317145,
A318813,
A330663,
A330665,
A330675,
A330676,
A330728.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330778
Triangle read by rows: T(n,k) is the number of balanced reduced multisystems of weight n with maximum depth and atoms colored using exactly k colors.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 2, 17, 33, 18, 5, 86, 321, 420, 180, 16, 520, 3306, 7752, 7650, 2700, 61, 3682, 37533, 140172, 238560, 189000, 56700, 272, 30050, 473604, 2644356, 6899070, 9196740, 6085800, 1587600, 1385, 278414, 6630909, 53244180, 199775820, 398328480, 435954960, 247665600, 57153600
Offset: 1
Triangle begins:
1;
1, 1;
1, 4, 3;
2, 17, 33, 18;
5, 86, 321, 420, 180;
16, 520, 3306, 7752, 7650, 2700;
61, 3682, 37533, 140172, 238560, 189000, 56700;
272, 30050, 473604, 2644356, 6899070, 9196740, 6085800, 1587600;
...
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
{my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))}
Showing 1-8 of 8 results.
Comments