A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330475.
The version where the atoms are the prime indices of n is
A330665.
The (weakly) normal version is
A330676.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of strongly normal multisets are
A035310.
Series-reduced rooted trees with strongly normal leaves are
A316652.
Cf.
A000311,
A000669,
A001055,
A001678,
A005121,
A005804,
A316651,
A318812,
A330467,
A330474,
A330625,
A330628,
A330664,
A330677,
A330679.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330676
Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0
The a(0) = 1 through a(3) = 8 multisystems:
{} {1} {1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330655.
The version where the atoms are the prime indices of n is
A330665.
The strongly normal version is
A330675.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
Cf.
A000669,
A001055,
A005121,
A005804,
A318812,
A330469,
A330474,
A330654,
A330664,
A330677,
A330679.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020
A330664
Number of non-isomorphic balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 7, 16, 16, 27, 2, 61, 33, 272, 27, 123, 61, 1385, 27, 78, 272, 95, 123, 7936, 362
Offset: 1
Non-isomorphic representatives of the a(n) multisystems for n = 2, 3, 6, 9, 10, 12 (commas and outer brackets elided):
1 11 {1}{12} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}}
{2}{11} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}}
{{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}}
{{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}}
{{2}}{{1}{11}} {{2}}{{1}{13}}
{{2}}{{3}{11}}
{{23}}{{1}{1}}
The non-maximal version is
A330666.
The case of constant or strict atoms is
A000111.
Non-isomorphic multiset partitions whose degrees are the prime indices of n are
A318285.
Cf.
A004114,
A005121,
A007716,
A048816,
A141268,
A306186,
A318846,
A318848,
A330470,
A330474,
A330663.
A330666
Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
1 11 12 111 112 1111 123 1122
{1}{11} {1}{12} {1}{111} {1}{23} {1}{122}
{2}{11} {11}{11} {11}{22}
{1}{1}{11} {12}{12}
{{1}}{{1}{11}} {1}{1}{22}
{{11}}{{1}{1}} {1}{2}{12}
{{1}}{{1}{22}}
{{11}}{{2}{2}}
{{1}}{{2}{12}}
{{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
{1,1,2,3}
{{1},{1,2,3}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{2},{1,1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{2},{3},{1,1}}
{{{1}},{{1},{2,3}}}
{{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
{{{2,3}},{{1},{1}}}
The maximum-depth version is
A330664.
Unlabeled balanced reduced multisystems by weight are
A330474.
The case of constant or strict atoms is
A318813.
Cf.
A000669,
A005121,
A007716,
A048816,
A141268,
A306186,
A317791,
A318812,
A318849,
A330470,
A330475,
A330655,
A330728.
A330727
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
Final terms in each row are
A330728.
Column k = 3 is
A318284(n) - 2 for n > 2.
Cf.
A000111,
A002846,
A005121,
A292504,
A318812,
A318813,
A318847,
A318848,
A318849,
A330475,
A330666,
A330935.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330726
Number of balanced reduced multisystems of maximum depth whose atoms are positive integers summing to n.
Original entry on oeis.org
1, 1, 2, 3, 7, 17, 54, 199, 869, 4341, 24514, 154187
Offset: 0
The a(1) = 1 through a(5) = 17 multisystems (commas elided):
{1} {2} {3} {4} {5}
{11} {12} {22} {23}
{{1}{11}} {13} {14}
{{1}{12}} {{1}{13}}
{{2}{11}} {{1}{22}}
{{{1}}{{1}{11}}} {{2}{12}}
{{{11}}{{1}{1}}} {{3}{11}}
{{{1}}{{1}{12}}}
{{{11}}{{1}{2}}}
{{{1}}{{2}{11}}}
{{{12}}{{1}{1}}}
{{{2}}{{1}{11}}}
{{{{1}}}{{{1}}{{1}{11}}}}
{{{{1}}}{{{11}}{{1}{1}}}}
{{{{1}{1}}}{{{1}}{{11}}}}
{{{{1}{11}}}{{{1}}{{1}}}}
{{{{11}}}{{{1}}{{1}{1}}}}
The case with all atoms equal to 1 is
A000111.
The non-maximal version is
A330679.
Cf.
A000669,
A002846,
A005121,
A141268,
A196545,
A213427,
A317145,
A318813,
A330663,
A330665,
A330675,
A330676,
A330728.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Showing 1-6 of 6 results.
Comments