A330663
Number of non-isomorphic balanced reduced multisystems of weight n and maximum depth.
Original entry on oeis.org
1, 1, 2, 4, 20, 140, 1411
Offset: 0
Non-isomorphic representatives of the a(2) = 2 through a(4) = 20 multisystems:
{1,1} {{1},{1,1}} {{{1}},{{1},{1,1}}}
{1,2} {{1},{1,2}} {{{1,1}},{{1},{1}}}
{{1},{2,3}} {{{1}},{{1},{1,2}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}}
{{{1}},{{1},{2,2}}}
{{{1,1}},{{2},{2}}}
{{{1}},{{1},{2,3}}}
{{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,1}}}
{{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}}
{{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}}
{{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,1}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
{{{2,3}},{{1},{1}}}
The non-maximal version is
A330474.
The case where the leaves are sets (as opposed to multisets) is
A330677.
The case with all atoms distinct is
A000111.
The case with all atoms equal is (also)
A000111.
Cf.
A000311,
A004114,
A005121,
A006472,
A007716,
A048816,
A141268,
A306186,
A330470,
A330655,
A330664.
A330675
Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
Original entry on oeis.org
1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0
The a(2) = 2 and a(3) = 6 multisystems:
{1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
{{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
{{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
{{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
{{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
{{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
{{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
{{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
{{2}}{{3}{11}} {{2}}{{3}{14}}
{{23}}{{1}{1}} {{23}}{{1}{4}}
{{3}}{{1}{12}} {{2}}{{4}{13}}
{{3}}{{2}{11}} {{24}}{{1}{3}}
{{3}}{{1}{24}}
{{3}}{{2}{14}}
{{3}}{{4}{12}}
{{34}}{{1}{2}}
{{4}}{{1}{23}}
{{4}}{{2}{13}}
{{4}}{{3}{12}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330475.
The version where the atoms are the prime indices of n is
A330665.
The (weakly) normal version is
A330676.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of strongly normal multisets are
A035310.
Series-reduced rooted trees with strongly normal leaves are
A316652.
Cf.
A000311,
A000669,
A001055,
A001678,
A005121,
A005804,
A316651,
A318812,
A330467,
A330474,
A330625,
A330628,
A330664,
A330677,
A330679.
-
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330665
Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 5, 1, 3, 1, 2, 2, 1, 1, 16, 1, 2, 1, 2, 1, 5, 1, 5, 1, 1, 1, 11, 1, 1, 2, 16, 1, 3, 1, 2, 1, 3, 1, 27, 1, 1, 2, 2, 1, 3, 1, 16, 2, 1, 1, 11, 1
Offset: 1
The a(n) multisystems for n = 2, 6, 12, 24, 48:
{1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}} {{{{1}}},{{{1}},{{1},{1,2}}}}
{{2},{1,1}} {{{1,1}},{{1},{2}}} {{{{1}}},{{{1,1}},{{1},{2}}}}
{{{1}},{{2},{1,1}}} {{{{1},{1}}},{{{1}},{{1,2}}}}
{{{1,2}},{{1},{1}}} {{{{1},{1,1}}},{{{1}},{{2}}}}
{{{2}},{{1},{1,1}}} {{{{1,1}}},{{{1}},{{1},{2}}}}
{{{{1}}},{{{1}},{{2},{1,1}}}}
{{{{1}}},{{{1,2}},{{1},{1}}}}
{{{{1},{1}}},{{{2}},{{1,1}}}}
{{{{1},{1,2}}},{{{1}},{{1}}}}
{{{{1,1}}},{{{2}},{{1},{1}}}}
{{{{1}}},{{{2}},{{1},{1,1}}}}
{{{{1},{2}}},{{{1}},{{1,1}}}}
{{{{1,2}}},{{{1}},{{1},{1}}}}
{{{{2}}},{{{1}},{{1},{1,1}}}}
{{{{2}}},{{{1,1}},{{1},{1}}}}
{{{{2},{1,1}}},{{{1}},{{1}}}}
The last nonzero term in row n of
A330667 is a(n).
The non-maximal version is
A318812.
Other labeled versions are
A330675 (strongly normal) and
A330676 (normal).
Cf.
A001055,
A005121,
A005804,
A050336,
A213427,
A292505,
A317144,
A318849,
A320160,
A330474,
A330475,
A330679.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330676
Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0
The a(0) = 1 through a(3) = 8 multisystems:
{} {1} {1,1} {{1},{1,1}}
{1,2} {{1},{1,2}}
{{1},{2,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,2}}
{{2},{1,3}}
{{3},{1,2}}
The case with all atoms equal is
A000111.
The case with all atoms different is
A006472.
The version allowing all depths is
A330655.
The version where the atoms are the prime indices of n is
A330665.
The strongly normal version is
A330675.
The version where the degrees are the prime indices of n is
A330728.
Multiset partitions of normal multisets are
A255906.
Series-reduced rooted trees with normal leaves are
A316651.
Cf.
A000669,
A001055,
A005121,
A005804,
A318812,
A330469,
A330474,
A330654,
A330664,
A330677,
A330679.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020
A330677
Number of non-isomorphic balanced reduced multisystems of weight n and maximum depth whose leaves (which are multisets of atoms) are sets.
Original entry on oeis.org
1, 1, 1, 2, 11, 81, 859
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(4) = 11 multisystems:
{} {1} {1,2} {{1},{1,2}} {{{1}},{{1},{1,2}}}
{{1},{2,3}} {{{1}},{{1},{2,3}}}
{{{1,2}},{{1},{1}}}
{{{1}},{{2},{1,2}}}
{{{1,2}},{{1},{2}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{1}},{{2},{3,4}}}
{{{1,2}},{{3},{4}}}
{{{2}},{{1},{1,3}}}
{{{2,3}},{{1},{1}}}
The version with all distinct atoms is
A000111.
Non-isomorphic set multipartitions are
A049311.
The (non-maximal) tree version is
A330626.
Allowing leaves to be multisets gives
A330663.
The case with prescribed degrees is
A330664.
The version allowing all depths is
A330668.
Cf.
A000669,
A001678,
A004114,
A005121,
A007716,
A141268,
A283877,
A306186,
A330465,
A330470,
A330624.
A330728
Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1
The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
11 {1}{12} {1}{23} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}}
{2}{11} {2}{13} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}}
{3}{12} {{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}}
{{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}}
{{2}}{{1}{12}} {{2}}{{1}{11}} {{1}}{{3}{12}}
{{2}}{{2}{11}} {{13}}{{1}{2}}
{{22}}{{1}{1}} {{2}}{{1}{13}}
{{2}}{{3}{11}}
{{23}}{{1}{1}}
{{3}}{{1}{12}}
{{3}}{{2}{11}}
The version with distinct atoms is
A006472.
The non-maximal version is
A318846.
Final terms in each row of
A330727.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
A330666
Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
1 11 12 111 112 1111 123 1122
{1}{11} {1}{12} {1}{111} {1}{23} {1}{122}
{2}{11} {11}{11} {11}{22}
{1}{1}{11} {12}{12}
{{1}}{{1}{11}} {1}{1}{22}
{{11}}{{1}{1}} {1}{2}{12}
{{1}}{{1}{22}}
{{11}}{{2}{2}}
{{1}}{{2}{12}}
{{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
{1,1,2,3}
{{1},{1,2,3}}
{{1,1},{2,3}}
{{1,2},{1,3}}
{{2},{1,1,3}}
{{1},{1},{2,3}}
{{1},{2},{1,3}}
{{2},{3},{1,1}}
{{{1}},{{1},{2,3}}}
{{{1,1}},{{2},{3}}}
{{{1}},{{2},{1,3}}}
{{{1,2}},{{1},{3}}}
{{{2}},{{1},{1,3}}}
{{{2}},{{3},{1,1}}}
{{{2,3}},{{1},{1}}}
The maximum-depth version is
A330664.
Unlabeled balanced reduced multisystems by weight are
A330474.
The case of constant or strict atoms is
A318813.
Cf.
A000669,
A005121,
A007716,
A048816,
A141268,
A306186,
A317791,
A318812,
A318849,
A330470,
A330475,
A330655,
A330728.
Showing 1-7 of 7 results.
Comments