cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A002218 Number of unlabeled nonseparable (or 2-connected) graphs (or blocks) with n nodes.

Original entry on oeis.org

0, 1, 1, 3, 10, 56, 468, 7123, 194066, 9743542, 900969091, 153620333545, 48432939150704, 28361824488394169, 30995890806033380784, 63501635429109597504951, 244852079292073376010411280, 1783160594069429925952824734641, 24603887051350945867492816663958981
Offset: 1

Views

Author

Keywords

Comments

By definition, a(n) gives the number of graphs with zero cutpoints. - Travis Hoppe, Apr 28 2014
For n > 2, a(n) is also the number of simple biconnected graphs on n nodes. - Eric W. Weisstein, Dec 07 2021
This sequence follows R. W. Robinson's definition of a nonseparable graph which includes K_2 but not the singleton graph K_1. This definition is most suited to graphical enumeration. Other authors sometimes include K_1 as a block or exclude K_2 as not 2-connected. - Andrew Howroyd, Feb 26 2023

References

  • P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 188.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A325111 (for n>1).
Column sums of A339070.
Row sums of A339071.
The labeled version is A013922.
Cf. A000088 (graphs), A001349 (connected graphs), A006289, A006290, A004115 (rooted case), A010355 (by edges), A241767.

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    { my(N=12); Vec(OgfSeries(cycleIndexSeries(N)), -N) } \\ Andrew Howroyd, Dec 28 2020

Extensions

More terms from Ronald C. Read. Robinson and Walsh list the first 26 terms.
a(1) changed from 0 to 1 by Eric W. Weisstein, Dec 07 2021
a(1) restored to 0 by Andrew Howroyd, Feb 26 2023

A007146 Number of unlabeled simple connected bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 3, 11, 60, 502, 7403, 197442, 9804368, 902818087, 153721215608, 48443044675155, 28363687700395422, 30996524108446916915, 63502033750022111383196, 244852545022627009655180986, 1783161611023802810566806448531, 24603891215865809635944516464394339
Offset: 1

Views

Author

Keywords

Comments

Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - Gus Wiseman, Sep 02 2019

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005470 (number of simple graphs).
Cf. A007145 (number of simple connected rooted bridgeless graphs).
Cf. A052446 (number of simple connected bridged graphs).
Cf. A263914 (number of simple bridgeless graphs).
Cf. A263915 (number of simple bridged graphs).
The labeled version is A095983.
Row sums of A263296 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.

Programs

  • PARI
    \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) = A001349(n) - A052446(n). - Gus Wiseman, Sep 02 2019

Extensions

Reference gives first 22 terms.

A316652 Number of series-reduced rooted trees whose leaves span an initial interval of positive integers with multiplicities an integer partition of n.

Original entry on oeis.org

1, 2, 9, 69, 623, 7793, 110430, 1906317, 36833614, 816101825, 19925210834, 541363267613, 15997458049946, 515769374925576, 17905023985615254, 669030297769291562, 26689471638523499483, 1134895275721374771655, 51161002326406795249910, 2440166138715867838359915
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 9 trees:
(1(11)), (111),
(1(12)), (2(11)), (112),
(1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])]];
    Table[Sum[Length[gro[m]],{m,Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]}],{n,4}]
  • PARI
    \\ See A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 04 2021

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 04 2021

A318566 Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.

Original entry on oeis.org

1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions:
  {{{1,1,1}}}
  {{{1,1,2}}}
  {{{1,2,3}}}
  {{{1},{1,1}}}
  {{{1},{1,2}}}
  {{{1},{2,3}}}
  {{{2},{1,1}}}
  {{{1},{1},{1}}}
  {{{1},{1},{2}}}
  {{{1},{2},{3}}}
  {{{1}},{{1,1}}}
  {{{1}},{{1,2}}}
  {{{1}},{{2,3}}}
  {{{2}},{{1,1}}}
  {{{1}},{{1},{1}}}
  {{{1}},{{1},{2}}}
  {{{1}},{{2},{3}}}
  {{{2}},{{1},{1}}}
  {{{1}},{{1}},{{1}}}
  {{{1}},{{1}},{{2}}}
  {{{1}},{{2}},{{3}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]];
    Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020

A330465 Number of non-isomorphic series-reduced rooted trees whose leaves are multisets with a total of n elements.

Original entry on oeis.org

1, 4, 14, 87, 608, 5573, 57876, 687938, 9058892, 130851823, 2048654450, 34488422057, 620046639452, 11839393796270, 238984150459124, 5079583100918338, 113299159314626360, 2644085918303683758, 64393240540265515110, 1632731130253043991252, 43013015553755764179000
Offset: 1

Views

Author

Gus Wiseman, Dec 21 2019

Keywords

Comments

Also inequivalent leaf-colorings of phylogenetic rooted trees with n labels. A phylogenetic rooted tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets.

Examples

			Non-isomorphic representatives of the a(3) = 14 trees:
  ((1)((1)(1)))  ((1)((1)(2)))  ((1)((2)(3)))  ((2)((1)(1)))
  ((1)(1)(1))    ((1)(1)(2))    ((1)(2)(3))    ((2)(1,1))
  ((1)(1,1))     ((1)(1,2))     ((1)(2,3))
  (1,1,1)        (1,1,2)        (1,2,3)
		

Crossrefs

The version where leaves are atoms is A318231.
The case with sets as leaves is A330624.
The case with disjoint sets as leaves is A141268.
Labeled versions are A330467 (strongly normal) and A330469 (normal).
The singleton-reduced version is A330470.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n), p=sEulerT(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n ) + polcoef(p,n)); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 13 2020

A318565 Number of multiset partitions of multiset partitions of strongly normal multisets of size n.

Original entry on oeis.org

1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 30 2020

A318564 Number of multiset partitions of multiset partitions of normal multisets of size n.

Original entry on oeis.org

1, 6, 36, 274, 2408, 24440, 279172, 3542798, 49354816, 747851112, 12231881948, 214593346534, 4016624367288, 79843503990710, 1678916979373760, 37215518578700028, 866953456654946948, 21167221410812128266, 540346299720320080828, 14390314687100383124540, 399023209689817997883900
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@allnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021

A320665 Number of non-isomorphic multiset partitions of weight n with no singletons or vertices that appear only once.

Original entry on oeis.org

1, 0, 1, 1, 5, 6, 27, 47, 169, 406, 1327, 3790, 12560, 39919, 136821, 470589, 1687981, 6162696, 23173374, 88981796, 349969596, 1405386733, 5764142220, 24111709328, 102825231702, 446665313598, 1975339030948, 8888051121242, 40667889052853, 189126710033882, 893526261542899
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. This sequence counts non-isomorphic multiset partitions with no singletons whose dual also has no singletons.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(6) = 27 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
                      {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
                      {{1,1},{1,1}}  {{1,1},{1,1,1}}  {{1,1,2,2,2,2}}
                      {{1,1},{2,2}}  {{1,1},{1,2,2}}  {{1,1,2,2,3,3}}
                      {{1,2},{1,2}}  {{1,1},{2,2,2}}  {{1,1},{1,1,1,1}}
                                     {{1,2},{1,2,2}}  {{1,1,1},{1,1,1}}
                                                      {{1,1},{1,2,2,2}}
                                                      {{1,1,1},{2,2,2}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,1},{2,2,2,2}}
                                                      {{1,1,2},{2,2,2}}
                                                      {{1,1},{2,2,3,3}}
                                                      {{1,1,2},{2,3,3}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,1},{1,2},{2,2}}
                                                      {{1,1},{2,2},{2,2}}
                                                      {{1,1},{2,2},{3,3}}
                                                      {{1,1},{2,3},{2,3}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,2},{2,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A-x*sv(1)), sExp(A-x*sv(1))))} \\ Andrew Howroyd, Jan 17 2023
    
  • PARI
    Vec(G(20,1)) \\ G defined in A369287. - Andrew Howroyd, Jan 28 2024

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A318285 Number of non-isomorphic multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 3, 7, 7, 7, 9, 11, 12, 16, 5, 15, 17, 22, 16, 29, 19, 30, 16, 21, 30, 23, 29, 42, 52, 56, 7, 47, 45, 57, 43, 77, 67, 77, 31, 101, 98, 135, 47, 85, 97, 176, 29, 66, 64, 118, 77, 231, 69, 97, 57, 181, 139, 297, 137, 385, 195, 166, 11, 162, 171, 490, 118
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(12) = 9 multiset partitions of {1,1,2,3}:
  {{1,1,2,3}}
  {{1},{1,2,3}}
  {{2},{1,1,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    sig(n)={my(f=factor(n), sig=vector(primepi(vecmax(f[,1])))); for(i=1, #f~, sig[primepi(f[i,1])]=f[i,2]); sig}
    C(sig)={my(n=sum(i=1, #sig, i*sig[i]), A=Vec(symGroupSeries(n)-1), B=O(x*x^n), c=prod(i=1, #sig, if(sig[i], sApplyCI(A[sig[i]], sig[i], A[i], i), 1))); polcoef(OgfSeries(sCartProd(c*x^n + B, sExp(x*Ser(A) + B))), n)}
    a(n)={if(n==1, 1, C(sig(n)))} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A317791(A181821(n)).

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 17 2023

A318231 Number of inequivalent leaf-colorings of series-reduced rooted trees with n nodes.

Original entry on oeis.org

1, 0, 2, 3, 9, 23, 73, 229, 796, 2891, 11118, 44695, 187825, 820320, 3716501, 17413308, 84209071, 419461933, 2148673503, 11301526295, 60956491070, 336744177291, 1903317319015, 10995856040076, 64873456288903, 390544727861462, 2397255454976268, 14993279955728851
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a series-reduced rooted tree, every non-leaf node has at least two branches.

Examples

			Inequivalent representatives of the a(6) = 23 leaf-colorings:
  (11(11))  (1(111))  (11111)
  (11(12))  (1(112))  (11112)
  (11(22))  (1(122))  (11122)
  (11(23))  (1(123))  (11123)
  (12(11))  (1(222))  (11223)
  (12(12))  (1(223))  (11234)
  (12(13))  (1(234))  (12345)
  (12(33))
  (12(34))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(concat(v[1..n-2], [0]))), n-1 )); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020
Showing 1-10 of 44 results. Next