cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A318566 Number of non-isomorphic multiset partitions of multiset partitions of multisets of size n.

Original entry on oeis.org

1, 6, 21, 104, 452, 2335, 11992, 66810, 385101, 2336352, 14738380, 96831730, 659809115, 4657075074, 33974259046, 255781455848, 1984239830571, 15839628564349, 129951186405574, 1094486382191624, 9453318070371926, 83654146992936350, 757769011659766015, 7020652591448497490
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 21 multiset partitions of multiset partitions:
  {{{1,1,1}}}
  {{{1,1,2}}}
  {{{1,2,3}}}
  {{{1},{1,1}}}
  {{{1},{1,2}}}
  {{{1},{2,3}}}
  {{{2},{1,1}}}
  {{{1},{1},{1}}}
  {{{1},{1},{2}}}
  {{{1},{2},{3}}}
  {{{1}},{{1,1}}}
  {{{1}},{{1,2}}}
  {{{1}},{{2,3}}}
  {{{2}},{{1,1}}}
  {{{1}},{{1},{1}}}
  {{{1}},{{1},{2}}}
  {{{1}},{{2},{3}}}
  {{{2}},{{1},{1}}}
  {{{1}},{{1}},{{1}}}
  {{{1}},{{1}},{{2}}}
  {{{1}},{{2}},{{3}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    dubnorm[m_]:=First[Union[Table[Map[Sort,m/.Rule@@@Table[{Union[Flatten[m]][[i]],Union[Flatten[m]][[perm[[i]]]]},{i,Length[perm]}],{0,2}],{perm,Permutations[Union[Flatten[m]]]}]]];
    Table[Length[Union[dubnorm/@Join@@mps/@Join@@mps/@strnorm[n]]],{n,5}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=sExp(symGroupSeries(n))); NumUnlabeledObjsSeq(sCartProd(A, sExp(A)-1))} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020

A318565 Number of multiset partitions of multiset partitions of strongly normal multisets of size n.

Original entry on oeis.org

1, 6, 27, 169, 1029, 7817, 61006, 547537, 5202009, 54506262, 606311524, 7299051826, 92985064466, 1264720212352, 18137495642192, 275078184766323, 4379514178076452, 73235806332442156, 1280229713195027792, 23381809052104639236, 444740694108284116235, 8801030741502964613534
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities.

Examples

			The a(2) = 6 multiset partitions of multiset partitions:
  {{{1,1}}}
  {{{1,2}}}
  {{{1},{1}}}
  {{{1},{2}}}
  {{{1}},{{1}}}
  {{{1}},{{2}}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Sum[Length[mps[m]],{m,Join@@mps/@strnorm[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); StronglyNormalLabelingsSeq(sExp(sExp(A))-1)} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 30 2020

A323787 Number of non-isomorphic multiset partitions of strict multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 14, 56, 219, 1001, 4588
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 14 multiset partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{2}}    {{123}}
         {{1}}{{2}}  {{1}{11}}
                     {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{2}{3}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323790 Number of non-isomorphic weight-n sets of sets of sets.

Original entry on oeis.org

1, 1, 3, 9, 33, 113, 474, 1985
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Non-isomorphic sets of sets are counted by A283877.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets of sets of sets:
  {{1}}  {{12}}      {{123}}
         {{1}{2}}    {{1}{12}}
         {{1}}{{2}}  {{1}{23}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{2}}{{3}}
Non-isomorphic representatives of the a(4) = 33 sets of sets of sets:
  {{1234}}             {{1}{123}}         {{1}{2}{12}}       {{1}}{{1}{12}}
  {{1}{234}}           {{12}{13}}         {{1}}{{2}{12}}
  {{12}{34}}           {{1}}{{123}}       {{12}}{{1}{2}}
  {{1}}{{234}}         {{1}{2}{13}}       {{1}}{{2}}{{12}}
  {{1}{2}{34}}         {{12}}{{13}}       {{1}}{{2}}{{1}{2}}
  {{12}}{{34}}         {{1}}{{1}{23}}
  {{1}}{{2}{34}}       {{1}}{{2}{13}}
  {{1}{2}{3}{4}}       {{12}}{{1}{3}}
  {{12}}{{3}{4}}       {{2}}{{1}{13}}
  {{1}}{{2}}{{34}}     {{1}}{{1}{2}{3}}
  {{1}}{{2}{3}{4}}     {{1}}{{2}}{{13}}
  {{1}{2}}{{3}{4}}     {{1}{2}}{{1}{3}}
  {{1}}{{2}}{{3}{4}}   {{1}}{{2}}{{1}{3}}
  {{1}}{{2}}{{3}}{{4}}
		

Crossrefs

A323788 Number of non-isomorphic weight-n sets of multisets of multisets.

Original entry on oeis.org

1, 1, 5, 19, 88, 391, 1995, 10281
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic strict multiset partitions of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 19 multiset partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{1}}    {{123}}
         {{1}{2}}    {{1}{11}}
         {{1}}{{2}}  {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}{1}{1}}
                     {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323789 Number of non-isomorphic weight-n sets of sets of multisets.

Original entry on oeis.org

1, 1, 4, 15, 64, 269, 1310, 6460
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of non-isomorphic strict multiset partitions, with strict parts, of multiset partitions of weight n.
All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partition partitions:
  {{1}}  {{11}}      {{111}}
         {{12}}      {{112}}
         {{1}{2}}    {{123}}
         {{1}}{{2}}  {{1}{11}}
                     {{1}{12}}
                     {{1}{23}}
                     {{2}{11}}
                     {{1}}{{11}}
                     {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{2}}{{11}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323791 Number of non-isomorphic weight-n sets of multisets of sets.

Original entry on oeis.org

1, 1, 4, 13, 52, 196, 877, 3917
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 13 sets of multisets of sets:
  {{1}}  {{12}}      {{123}}
         {{1}{1}}    {{1}{12}}
         {{1}{2}}    {{1}{23}}
         {{1}}{{2}}  {{1}{1}{1}}
                     {{1}}{{12}}
                     {{1}{1}{2}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{1}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{2}}{{1}{1}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A323792 Number of non-isomorphic weight-n multisets of sets of sets.

Original entry on oeis.org

1, 1, 4, 11, 43, 145, 614, 2549
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

All sets and multisets must be finite, and only the outermost may be empty.
The weight of an atom is 1, and the weight of a multiset is the sum of weights of its elements, counting multiplicity.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 11 multiset partitions:
  {{1}}  {{12}}      {{123}}
         {{1}{2}}    {{1}{12}}
         {{1}}{{1}}  {{1}{23}}
         {{1}}{{2}}  {{1}}{{12}}
                     {{1}}{{23}}
                     {{1}{2}{3}}
                     {{1}}{{1}{2}}
                     {{1}}{{2}{3}}
                     {{1}}{{1}}{{1}}
                     {{1}}{{1}}{{2}}
                     {{1}}{{2}}{{3}}
		

Crossrefs

A318562 Number of combinatory separations of strongly normal multisets of weight n with strongly normal parts.

Original entry on oeis.org

1, 4, 10, 32, 80, 239, 605, 1670, 4251
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    strnormQ[m_]:=OrderedQ[Length/@Split[m],GreaterEqual];
    Table[Length[Select[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}],And@@strnormQ/@#[[2]]&]],{n,6}]

A318563 Number of combinatory separations of strongly normal multisets of weight n.

Original entry on oeis.org

1, 4, 10, 33, 85, 272, 730, 2197, 6133
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition it has weakly decreasing multiplicities. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset 1122 are {1122}, {1,112}, {1,122}, {11,11}, {12,12}, {1,1,11}, {1,1,12}, {1,1,1,1}. This list excludes {12,11} because one cannot partition 1122 into two blocks where one block has two distinct elements and the other block has two equal elements.

Examples

			The a(3) = 10 combinatory separations:
  111<={111}
  111<={1,11}
  111<={1,1,1}
  112<={112}
  112<={1,11}
  112<={1,12}
  112<={1,1,1}
  123<={123}
  123<={1,12}
  123<={1,1,1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,strnorm[n]}]],{n,7}]
Showing 1-10 of 16 results. Next