A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.
1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 33, 21, 8, 1, 11, 91, 104, 36, 10, 1, 15, 298, 452, 238, 55, 12, 1, 22, 910, 2335, 1430, 455, 78, 14, 1, 30, 3017, 11992, 10179, 3505, 775, 105, 16, 1, 42, 9945, 66810, 74299, 31881, 7297, 1218, 136, 18, 1, 56
Offset: 1
Examples
Array begins: k=1: k=2: k=3: k=4: k=5: k=6: n=1: 1 1 1 1 1 1 n=2: 2 4 6 8 10 12 n=3: 3 10 21 36 55 78 n=4: 5 33 104 238 455 775 n=5: 7 91 452 1430 3505 7297 n=6: 11 298 2335 10179 31881 80897 Non-isomorphic representatives of the A(3,3) = 21 multiset partitions: {{111}} {{112}} {{123}} {{1}{11}} {{1}{12}} {{1}{23}} {{1}}{{11}} {{2}{11}} {{1}}{{23}} {{1}{1}{1}} {{1}}{{12}} {{1}{2}{3}} {{1}}{{1}{1}} {{1}{1}{2}} {{1}}{{2}{3}} {{1}}{{1}}{{1}} {{2}}{{11}} {{1}}{{2}}{{3}} {{1}}{{1}{2}} {{2}}{{1}{1}} {{1}}{{1}}{{2}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]]; expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]]; expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]]]]; strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n]; kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]]; Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]
Extensions
a(46)-a(56) from Robert Price, May 11 2021
Comments