A323795
Number of non-isomorphic weight-n sets of non-overlapping sets of sets.
Original entry on oeis.org
1, 1, 3, 8, 27, 82, 310, 1163
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(4) = 27 multiset partitions:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{1}{12}} {{1}{123}}
{{1}}{{2}} {{1}{23}} {{12}{13}}
{{1}}{{12}} {{1}{234}}
{{1}}{{23}} {{12}{34}}
{{1}{2}{3}} {{1}}{{123}}
{{1}}{{2}{3}} {{1}{2}{12}}
{{1}}{{2}}{{3}} {{1}{2}{13}}
{{12}}{{13}}
{{1}}{{234}}
{{1}{2}{34}}
{{12}}{{34}}
{{1}}{{2}{12}}
{{12}}{{1}{2}}
{{1}}{{2}{13}}
{{12}}{{1}{3}}
{{1}}{{2}{34}}
{{1}{2}{3}{4}}
{{12}}{{3}{4}}
{{2}}{{1}{13}}
{{1}}{{2}}{{12}}
{{1}}{{2}}{{13}}
{{1}}{{2}}{{34}}
{{1}}{{2}{3}{4}}
{{1}{2}}{{3}{4}}
{{1}}{{2}}{{3}{4}}
{{1}}{{2}}{{3}}{{4}}
A323790
Number of non-isomorphic weight-n sets of sets of sets.
Original entry on oeis.org
1, 1, 3, 9, 33, 113, 474, 1985
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets of sets of sets:
{{1}} {{12}} {{123}}
{{1}{2}} {{1}{12}}
{{1}}{{2}} {{1}{23}}
{{1}}{{12}}
{{1}}{{23}}
{{1}{2}{3}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{1}}{{2}}{{3}}
Non-isomorphic representatives of the a(4) = 33 sets of sets of sets:
{{1234}} {{1}{123}} {{1}{2}{12}} {{1}}{{1}{12}}
{{1}{234}} {{12}{13}} {{1}}{{2}{12}}
{{12}{34}} {{1}}{{123}} {{12}}{{1}{2}}
{{1}}{{234}} {{1}{2}{13}} {{1}}{{2}}{{12}}
{{1}{2}{34}} {{12}}{{13}} {{1}}{{2}}{{1}{2}}
{{12}}{{34}} {{1}}{{1}{23}}
{{1}}{{2}{34}} {{1}}{{2}{13}}
{{1}{2}{3}{4}} {{12}}{{1}{3}}
{{12}}{{3}{4}} {{2}}{{1}{13}}
{{1}}{{2}}{{34}} {{1}}{{1}{2}{3}}
{{1}}{{2}{3}{4}} {{1}}{{2}}{{13}}
{{1}{2}}{{3}{4}} {{1}{2}}{{1}{3}}
{{1}}{{2}}{{3}{4}} {{1}}{{2}}{{1}{3}}
{{1}}{{2}}{{3}}{{4}}
Cf.
A004111,
A007716,
A049311,
A050326,
A050343,
A283877,
A306186,
A316980,
A318564,
A318565,
A318566,
A318812.
A330459
Number of set partitions of set-systems with total sum n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
Offset: 0
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
Cf.
A007713,
A050342,
A050343,
A279375,
A279785,
A283877,
A294617,
A330460,
A330462,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
-
\\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A323788
Number of non-isomorphic weight-n sets of multisets of multisets.
Original entry on oeis.org
1, 1, 5, 19, 88, 391, 1995, 10281
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 19 multiset partitions:
{{1}} {{11}} {{111}}
{{12}} {{112}}
{{1}{1}} {{123}}
{{1}{2}} {{1}{11}}
{{1}}{{2}} {{1}{12}}
{{1}{23}}
{{2}{11}}
{{1}}{{11}}
{{1}{1}{1}}
{{1}}{{12}}
{{1}{1}{2}}
{{1}}{{23}}
{{1}{2}{3}}
{{2}}{{11}}
{{1}}{{1}{1}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{2}}{{1}{1}}
{{1}}{{2}}{{3}}
Cf.
A005121,
A007716,
A049311,
A050343,
A283877,
A306186,
A316980,
A317791,
A318564,
A318565,
A318566,
A318812.
A323789
Number of non-isomorphic weight-n sets of sets of multisets.
Original entry on oeis.org
1, 1, 4, 15, 64, 269, 1310, 6460
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partition partitions:
{{1}} {{11}} {{111}}
{{12}} {{112}}
{{1}{2}} {{123}}
{{1}}{{2}} {{1}{11}}
{{1}{12}}
{{1}{23}}
{{2}{11}}
{{1}}{{11}}
{{1}}{{12}}
{{1}}{{23}}
{{1}{2}{3}}
{{2}}{{11}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{1}}{{2}}{{3}}
A323791
Number of non-isomorphic weight-n sets of multisets of sets.
Original entry on oeis.org
1, 1, 4, 13, 52, 196, 877, 3917
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 13 sets of multisets of sets:
{{1}} {{12}} {{123}}
{{1}{1}} {{1}{12}}
{{1}{2}} {{1}{23}}
{{1}}{{2}} {{1}{1}{1}}
{{1}}{{12}}
{{1}{1}{2}}
{{1}}{{23}}
{{1}{2}{3}}
{{1}}{{1}{1}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{2}}{{1}{1}}
{{1}}{{2}}{{3}}
Cf.
A007716,
A049311,
A050326,
A050343,
A283877,
A306186,
A316980,
A318564,
A318565,
A318566,
A318812.
A323792
Number of non-isomorphic weight-n multisets of sets of sets.
Original entry on oeis.org
1, 1, 4, 11, 43, 145, 614, 2549
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 11 multiset partitions:
{{1}} {{12}} {{123}}
{{1}{2}} {{1}{12}}
{{1}}{{1}} {{1}{23}}
{{1}}{{2}} {{1}}{{12}}
{{1}}{{23}}
{{1}{2}{3}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
Cf.
A007716,
A049311,
A050326,
A050343,
A255906,
A283877,
A306186,
A316980,
A318564,
A318565,
A318566.
A323793
Number of non-isomorphic weight-n multisets of multisets of sets.
Original entry on oeis.org
1, 1, 5, 15, 65, 240, 1090, 4845
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 15 multiset partitions:
{{1}} {{12}} {{123}}
{{1}{1}} {{1}{12}}
{{1}{2}} {{1}{23}}
{{1}}{{1}} {{1}{1}{1}}
{{1}}{{2}} {{1}}{{12}}
{{1}{1}{2}}
{{1}}{{23}}
{{1}{2}{3}}
{{1}}{{1}{1}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{2}}{{1}{1}}
{{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
A323794
Number of non-isomorphic weight-n multisets of sets of multisets.
Original entry on oeis.org
1, 1, 5, 17, 77, 318, 1561, 7667
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(3) = 17 multiset partitions:
{{1}} {{11}} {{111}}
{{12}} {{112}}
{{1}{2}} {{123}}
{{1}}{{1}} {{1}{11}}
{{1}}{{2}} {{1}{12}}
{{1}{23}}
{{2}{11}}
{{1}}{{11}}
{{1}}{{12}}
{{1}}{{23}}
{{1}{2}{3}}
{{2}}{{11}}
{{1}}{{1}{2}}
{{1}}{{2}{3}}
{{1}}{{1}}{{1}}
{{1}}{{1}}{{2}}
{{1}}{{2}}{{3}}
A330452
Number of set partitions of strict multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0
The a(4) = 13 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((21))
((2))((11))
Cf.
A001970,
A007713,
A050343,
A063834,
A089259,
A261049,
A271619,
A279375,
A294617,
A318565,
A323787-
A323795,
A330452-
A330459,
A330460.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
-
\\ here BellP is A000110 as series.
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
Showing 1-10 of 17 results.
Comments