A330459
Number of set partitions of set-systems with total sum n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
Offset: 0
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
Cf.
A007713,
A050342,
A050343,
A279375,
A279785,
A283877,
A294617,
A330460,
A330462,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
-
\\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330453
Number of strict multiset partitions of multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 3, 9, 23, 62, 161, 410, 1031, 2579, 6359, 15575, 37830, 91241, 218581, 520544, 1232431, 2902644, 6802178, 15866054, 36844016, 85202436, 196251933, 450341874, 1029709478, 2346409350, 5329371142, 12066816905, 27240224766, 61317231288, 137643961196
Offset: 0
The a(4) = 23 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((2)(2)) ((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((11)(11))
((1)(1)(2)) ((1))((111))
((1))((21)) ((1)(1)(11))
((2))((11)) ((1))((1)(11))
((1))((1)(2)) ((1)(1)(1)(1))
((2))((1)(1)) ((11))((1)(1))
((1))((1)(1)(1))
The not necessarily strict case is
A007713.
Cf.
A001055,
A001970,
A050336,
A050343,
A089259,
A261049,
A271619,
A316980,
A318566,
A323787-
A323795,
A330452-
A330459,
A330461,
A330463.
-
with(numtheory): with(combinat):
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d)
*d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n)
end:
seq(a(n), n=0..32); # Alois P. Heinz, Jul 18 2021
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]
A330456
Number of multisets of nonempty sets of nonempty sets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 2, 5, 10, 20, 43, 84, 168, 332, 650, 1255, 2428, 4636, 8827, 16702, 31457, 58919, 109977, 204286, 378135, 697240, 1281315, 2346612, 4284654, 7799248, 14157079, 25626996, 46269838, 83330373, 149717844, 268371413, 479996794, 856661792, 1525761119, 2712050472
Offset: 0
The a(4) = 10 partitions:
((4)) ((13)) ((1)(12)) ((2))((2)) ((1))((1))((1))((1))
((1)(3)) ((1))((12))
((1))((3)) ((1))((1)(2))
((1))((1))((2))
Cf.
A001055,
A001970,
A007713,
A050342,
A050343,
A063834,
A089259,
A270995,
A279785,
A330461,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[And@@UnsameQ@@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
A330454
Number of sets of nonempty sets of nonempty multisets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 15, 39, 94, 224, 526, 1236, 2857, 6568, 15003, 34030, 76757, 172216, 384386, 853960, 1888891, 4160524, 9128355, 19953661, 43463021, 94354292, 204182435, 440505489, 947590424, 2032730905, 4348897216, 9280361316, 19755155955, 41953293592, 88891338202
Offset: 0
The a(4) = 15 partitions:
((4)) ((22)) ((13)) ((112)) ((1111))
((1)(3)) ((1)(12)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((12)) ((1))((1)(11))
((2))((11))
((1))((1)(2))
Cf.
A001970,
A007713,
A050336,
A050342,
A050343,
A261049,
A271619,
A279785,
A330461,
A330463,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@#,And@@UnsameQ@@@#]&]],{n,0,10}]
A330455
Number of sets of nonempty multisets of nonempty sets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 2, 6, 12, 28, 62, 134, 285, 610, 1277, 2661, 5506, 11305, 23064, 46803, 94406, 189484, 378522, 752668, 1490319, 2939093, 5774065, 11302564, 22048496, 42869613, 83091843, 160569590, 309398958, 594532990, 1139416396, 2178119059, 4153507514, 7901706341
Offset: 0
The a(4) = 12 partitions:
((4)) ((2)(2)) ((13)) ((1)(12)) ((1)(1)(1)(1))
((1)(3)) ((1)(1)(2)) ((1))((1)(1)(1))
((1))((3)) ((1))((12))
((1))((1)(2))
((2))((1)(1))
Cf.
A001055,
A001970,
A007713,
A050336,
A050343,
A089259,
A261049,
A270995,
A271619,
A323787-
A323795,
A330452-
A330459,
A330461.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
A330457
Number of multisets of nonempty multisets of nonempty sets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 3, 7, 17, 37, 87, 187, 414, 887, 1903, 4008, 8437, 17519, 36255, 74384, 151898, 308129, 622269, 1249768, 2499392, 4975421, 9865122, 19481300, 38331536, 75149380, 146840801, 285990797, 555297342, 1074996017, 2075201544, 3995079507, 7671034324, 14692086594
Offset: 0
The a(4) = 17 partitions:
((4)) ((13)) ((1)(12)) ((2)(2)) ((1)(1)(1)(1))
((1)(3)) ((1)(1)(2)) ((2))((2)) ((1))((1)(1)(1))
((1))((3)) ((1))((12)) ((1)(1))((1)(1))
((1))((1)(2)) ((1))((1))((1)(1))
((2))((1)(1)) ((1))((1))((1))((1))
((1))((1))((2))
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And@@UnsameQ@@@Join@@#&]],{n,0,10}]
A330458
Number of multisets of nonempty sets of nonempty multisets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 3, 8, 20, 49, 123, 292, 701, 1653, 3874, 8977, 20711, 47344, 107692, 243382, 547264, 1224048, 2725483, 6040796, 13334354, 29316445, 64215841, 140159357, 304890958, 661097630, 1429083295, 3080159882, 6620188725, 14190463947, 30338920339, 64702805452
Offset: 0
The a(4) = 20 partitions:
((4)) ((22)) ((13)) ((112)) ((1111))
((2))((2)) ((1)(3)) ((1)(12)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((12)) ((11))((11))
((2))((11)) ((1))((1)(11))
((1))((1)(2)) ((1))((1))((11))
((1))((1))((2)) ((1))((1))((1))((1))
Cf.
A001970,
A007713,
A050342,
A050343,
A063834,
A089259,
A261049,
A270995,
A271619,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And@@UnsameQ@@@#&]],{n,0,10}]
Showing 1-7 of 7 results.
Comments