cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A330452 Number of set partitions of strict multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2019

Keywords

Comments

Number of sets of disjoint nonempty sets of nonempty multisets of positive integers with total sum n.

Examples

			The a(4) = 13 partitions:
  ((4))  ((22))  ((31))      ((211))      ((1111))
                 ((1)(3))    ((1)(21))    ((1)(111))
                 ((1))((3))  ((2)(11))    ((1))((111))
                             ((1))((21))
                             ((2))((11))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
  • PARI
    \\ here BellP is A000110 as series.
    BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
    seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019

Formula

a(n) = Sum_{0 <= k <= n} A330463(n,k) * A000110(k).

Extensions

Terms a(18) and beyond from Andrew Howroyd, Dec 29 2019

A330460 Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 0, 0, 0, 0, 4, 5, 1, 0, 0, 0, 0, 5, 6, 1, 0, 0, 0, 0, 0, 6, 9, 2, 0, 0, 0, 0, 0, 0, 8, 13, 3, 0, 0, 0, 0, 0, 0, 0, 10, 23, 10, 1, 0, 0, 0, 0, 0, 0, 0, 12, 27, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 15, 40, 19, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  0
  0  2  1  0
  0  2  1  0  0
  0  3  2  0  0  0
  0  4  5  1  0  0  0
  0  5  6  1  0  0  0  0
  0  6  9  2  0  0  0  0  0
  0  8 13  3  0  0  0  0  0  0
  0 10 23 10  1  0  0  0  0  0  0
  0 12 27 11  1  0  0  0  0  0  0  0
  0 15 40 19  2  0  0  0  0  0  0  0  0
Row n = 8 counts the following set partitions:
  {{8}}      {{1},{7}}    {{1},{2},{5}}
  {{3,5}}    {{2},{6}}    {{1},{3},{4}}
  {{2,6}}    {{3},{5}}
  {{1,7}}    {{1},{3,4}}
  {{1,3,4}}  {{1},{2,5}}
  {{1,2,5}}  {{2},{1,5}}
             {{3},{1,4}}
             {{4},{1,3}}
             {{5},{1,2}}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 k*
             b(n-i, t, k)+b(n-i, t, k+1))(min(n-i, i-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Dec 29 2019
  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],Length[#]==k&&And[UnsameQ@@#,UnsameQ@@Join@@#]&]],{n,0,10},{k,0,n}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, x^k, b[n, i-1, k] + Function[t, k*b[n-i, t, k] + b[n-i, t, k + 1]][Min[n-i, i-1]]]];
    T[n_] := PadRight[CoefficientList[b[n, n, 0], x], n + 1];
    T /@ Range[0, 15] // Flatten (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)
  • PARI
    A(n)={my(v=Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n)))); vector(#v, n, my(p=v[n]); vector(n, k, sum(i=k, n, polcoef(p,i-1)*stirling(i-1, k-1, 2))))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

T(n,k) = Sum_{k <= i <= n} A060016(n,i) * A008277(i,k).
For n > 0, T(n,2) = Sum_{k = 1..n} (2^(k - 1) -1) * A060016(n,k).

A330453 Number of strict multiset partitions of multiset partitions of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 9, 23, 62, 161, 410, 1031, 2579, 6359, 15575, 37830, 91241, 218581, 520544, 1232431, 2902644, 6802178, 15866054, 36844016, 85202436, 196251933, 450341874, 1029709478, 2346409350, 5329371142, 12066816905, 27240224766, 61317231288, 137643961196
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Comments

Number of sets of nonempty multisets of nonempty multisets of positive integers with total sum n.

Examples

			The a(4) = 23 partitions:
  ((4))  ((22))    ((31))      ((211))        ((1111))
         ((2)(2))  ((1)(3))    ((1)(21))      ((1)(111))
                   ((1))((3))  ((2)(11))      ((11)(11))
                               ((1)(1)(2))    ((1))((111))
                               ((1))((21))    ((1)(1)(11))
                               ((2))((11))    ((1))((1)(11))
                               ((1))((1)(2))  ((1)(1)(1)(1))
                               ((2))((1)(1))  ((11))((1)(1))
                                              ((1))((1)(1)(1))
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d)
          *d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n)
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jul 18 2021
  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]

Formula

Weigh transform of A001970. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i.

A330456 Number of multisets of nonempty sets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 2, 5, 10, 20, 43, 84, 168, 332, 650, 1255, 2428, 4636, 8827, 16702, 31457, 58919, 109977, 204286, 378135, 697240, 1281315, 2346612, 4284654, 7799248, 14157079, 25626996, 46269838, 83330373, 149717844, 268371413, 479996794, 856661792, 1525761119, 2712050472
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 10 partitions:
  ((4))  ((13))      ((1)(12))        ((2))((2))  ((1))((1))((1))((1))
         ((1)(3))    ((1))((12))
         ((1))((3))  ((1))((1)(2))
                     ((1))((1))((2))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And[And@@UnsameQ@@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]

Formula

Euler transform of A050342. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.

A330454 Number of sets of nonempty sets of nonempty multisets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 2, 7, 15, 39, 94, 224, 526, 1236, 2857, 6568, 15003, 34030, 76757, 172216, 384386, 853960, 1888891, 4160524, 9128355, 19953661, 43463021, 94354292, 204182435, 440505489, 947590424, 2032730905, 4348897216, 9280361316, 19755155955, 41953293592, 88891338202
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 15 partitions:
  ((4))  ((22))  ((13))      ((112))        ((1111))
                 ((1)(3))    ((1)(12))      ((1)(111))
                 ((1))((3))  ((2)(11))      ((1))((111))
                             ((1))((12))    ((1))((1)(11))
                             ((2))((11))
                             ((1))((1)(2))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And[UnsameQ@@#,And@@UnsameQ@@@#]&]],{n,0,10}]

Formula

Weigh transform of A261049. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i.

A330455 Number of sets of nonempty multisets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 2, 6, 12, 28, 62, 134, 285, 610, 1277, 2661, 5506, 11305, 23064, 46803, 94406, 189484, 378522, 752668, 1490319, 2939093, 5774065, 11302564, 22048496, 42869613, 83091843, 160569590, 309398958, 594532990, 1139416396, 2178119059, 4153507514, 7901706341
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 12 partitions:
  ((4))  ((2)(2))  ((13))      ((1)(12))      ((1)(1)(1)(1))
                   ((1)(3))    ((1)(1)(2))    ((1))((1)(1)(1))
                   ((1))((3))  ((1))((12))
                               ((1))((1)(2))
                               ((2))((1)(1))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And[UnsameQ@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]

Formula

Weigh transform of A089259. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i.

A330457 Number of multisets of nonempty multisets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 3, 7, 17, 37, 87, 187, 414, 887, 1903, 4008, 8437, 17519, 36255, 74384, 151898, 308129, 622269, 1249768, 2499392, 4975421, 9865122, 19481300, 38331536, 75149380, 146840801, 285990797, 555297342, 1074996017, 2075201544, 3995079507, 7671034324, 14692086594
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 17 partitions:
  ((4))  ((13))      ((1)(12))        ((2)(2))    ((1)(1)(1)(1))
         ((1)(3))    ((1)(1)(2))      ((2))((2))  ((1))((1)(1)(1))
         ((1))((3))  ((1))((12))                  ((1)(1))((1)(1))
                     ((1))((1)(2))                ((1))((1))((1)(1))
                     ((2))((1)(1))                ((1))((1))((1))((1))
                     ((1))((1))((2))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And@@UnsameQ@@@Join@@#&]],{n,0,10}]

Formula

Euler transform of A089259. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.

A330458 Number of multisets of nonempty sets of nonempty multisets of positive integers with total sum n.

Original entry on oeis.org

1, 1, 3, 8, 20, 49, 123, 292, 701, 1653, 3874, 8977, 20711, 47344, 107692, 243382, 547264, 1224048, 2725483, 6040796, 13334354, 29316445, 64215841, 140159357, 304890958, 661097630, 1429083295, 3080159882, 6620188725, 14190463947, 30338920339, 64702805452
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2019

Keywords

Examples

			The a(4) = 20 partitions:
  ((4))  ((22))      ((13))      ((112))          ((1111))
         ((2))((2))  ((1)(3))    ((1)(12))        ((1)(111))
                     ((1))((3))  ((2)(11))        ((1))((111))
                                 ((1))((12))      ((11))((11))
                                 ((2))((11))      ((1))((1)(11))
                                 ((1))((1)(2))    ((1))((1))((11))
                                 ((1))((1))((2))  ((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,3],And@@UnsameQ@@@#&]],{n,0,10}]

Formula

Euler transform of A261049. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.

A330464 Number of non-isomorphic weight-n sets of set-systems with distinct multiset unions.

Original entry on oeis.org

1, 1, 3, 9, 32, 111, 463, 1942
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets of positive integers.
As an alternative description, a(n) is the number of non-isomorphic sets of sets of sets with n leaves where the inner sets of sets all have different multiset unions.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 9 sets:
  {}  {{{1}}}  {{{1,2}}}      {{{1,2,3}}}
               {{{1},{2}}}    {{{1},{1,2}}}
               {{{1}},{{2}}}  {{{1},{2,3}}}
                              {{{1}},{{1,2}}}
                              {{{1}},{{2,3}}}
                              {{{1},{2},{3}}}
                              {{{1}},{{1},{2}}}
                              {{{1}},{{2},{3}}}
                              {{{1}},{{2}},{{3}}}
		

Crossrefs

Non-isomorphic sets of sets are A283877.
Non-isomorphic sets of sets of sets are A323790.
Non-isomorphic set partitions of set-systems are A323795.
Showing 1-9 of 9 results.