A294617
Number of ways to choose a set partition of a strict integer partition of n.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0
The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, combinat[bell](t), b(n, i-1, t)+
`if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Nov 07 2017
-
Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A330459
Number of set partitions of set-systems with total sum n.
Original entry on oeis.org
1, 1, 1, 4, 6, 11, 26, 42, 78, 148, 280, 481, 867, 1569, 2742, 4933, 8493, 14857, 25925, 44877, 77022, 132511, 226449, 385396, 657314, 1111115, 1875708, 3157379, 5309439, 8885889, 14861478, 24760339, 41162971, 68328959, 113099231, 186926116, 308230044
Offset: 0
The a(6) = 26 partitions:
((6)) ((15)) ((123)) ((1)(2)(12))
((24)) ((1)(14)) ((1))((2)(12))
((1)(5)) ((1)(23)) ((12))((1)(2))
((2)(4)) ((2)(13)) ((2))((1)(12))
((1))((5)) ((3)(12)) ((1))((2))((12))
((2))((4)) ((1))((14))
((1))((23))
((1)(2)(3))
((2))((13))
((3))((12))
((1))((2)(3))
((2))((1)(3))
((3))((1)(2))
((1))((2))((3))
Cf.
A007713,
A050342,
A050343,
A279375,
A279785,
A283877,
A294617,
A330460,
A330462,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}]
-
\\ here L is A000009 and BellP is A000110 as series.
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330462
Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 1 0
0 2 1 0
0 2 2 0 0
0 3 4 0 0 0
0 4 6 2 0 0 0
0 5 11 3 0 0 0 0
0 6 16 8 0 0 0 0 0
0 8 25 15 1 0 0 0 0 0
0 10 35 28 4 0 0 0 0 0 0
...
Row n = 7 counts the following set-systems:
{{7}} {{1},{6}} {{1},{2},{4}}
{{1,6}} {{2},{5}} {{1},{2},{1,3}}
{{2,5}} {{3},{4}} {{1},{3},{1,2}}
{{3,4}} {{1},{1,5}}
{{1,2,4}} {{1},{2,4}}
{{2},{1,4}}
{{2},{2,3}}
{{3},{1,3}}
{{4},{1,2}}
{{1},{1,2,3}}
{{1,2},{1,3}}
Cf.
A001970,
A050343,
A063834,
A270995,
A271619,
A279375,
A279785,
A283877,
A294617,
A326031,
A330456,
A330460,
A330463,
A360764.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
-
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
{my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
A330452
Number of set partitions of strict multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0
The a(4) = 13 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((21))
((2))((11))
Cf.
A001970,
A007713,
A050343,
A063834,
A089259,
A261049,
A271619,
A279375,
A294617,
A318565,
A323787-
A323795,
A330452-
A330459,
A330460.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
-
\\ here BellP is A000110 as series.
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330463
Triangle read by rows where T(n,k) is the number of k-element sets of nonempty multisets of positive integers with total sum n.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 0, 3, 2, 0, 0, 5, 4, 0, 0, 0, 7, 11, 1, 0, 0, 0, 11, 20, 6, 0, 0, 0, 0, 15, 40, 16, 0, 0, 0, 0, 0, 22, 68, 40, 3, 0, 0, 0, 0, 0, 30, 120, 91, 11, 0, 0, 0, 0, 0, 0, 42, 195, 186, 41, 0, 0, 0, 0, 0, 0, 0, 56, 320, 367, 105, 3, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 2 0
0 3 2 0
0 5 4 0 0
0 7 11 1 0 0
0 11 20 6 0 0 0
0 15 40 16 0 0 0 0
0 22 68 40 3 0 0 0 0
...
Row n = 5 counts the following sets of multisets:
{{5}} {{1},{4}} {{1},{2},{1,1}}
{{1,4}} {{2},{3}}
{{2,3}} {{1},{1,3}}
{{1,1,3}} {{1},{2,2}}
{{1,2,2}} {{2},{1,2}}
{{1,1,1,2}} {{3},{1,1}}
{{1,1,1,1,1}} {{1},{1,1,2}}
{{1,1},{1,2}}
{{2},{1,1,1}}
{{1},{1,1,1,1}}
{{1,1},{1,1,1}}
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(
combinat[numbpart](i), j)*expand(b(n-i*j, i-1)*x^j), j=0..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 30 2019
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,2],And[UnsameQ@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[
PartitionsP[i], j]*Expand[b[n - i*j, i - 1]*x^j], {j, 0, n/i}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
-
A(n)={my(v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, Vecrev(v[n],n))}
{my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
A330759
Number T(n,k) of set partitions into k blocks of strict integer partitions of n; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 5, 1, 0, 5, 6, 1, 0, 6, 9, 2, 0, 8, 13, 3, 0, 10, 23, 10, 1, 0, 12, 27, 11, 1, 0, 15, 40, 19, 2, 0, 18, 51, 26, 3, 0, 22, 71, 40, 5, 0, 27, 100, 73, 16, 1, 0, 32, 127, 93, 19, 1, 0, 38, 163, 132, 31, 2, 0, 46, 215, 184, 45, 3
Offset: 0
T(10,1) = 10: (10), 1234, 127, 136, 145, 19, 235, 28, 37, 46.
T(10,2) = 23: 123|4, 124|3, 12|34, 12|7, 134|2, 13|24, 13|6, 14|23, 14|5, 15|4, 16|3, 17|2, 1|234, 1|27, 1|36, 1|45, 1|9, 23|5, 25|3, 2|35, 2|8, 3|7, 4|6.
T(10,3) = 10: 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3, 1|2|34, 1|2|7, 1|3|6, 1|4|5, 2|3|5.
T(10,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 2, 1;
0, 2, 1;
0, 3, 2;
0, 4, 5, 1;
0, 5, 6, 1;
0, 6, 9, 2;
0, 8, 13, 3;
0, 10, 23, 10, 1;
0, 12, 27, 11, 1;
0, 15, 40, 19, 2;
0, 18, 51, 26, 3;
0, 22, 71, 40, 5;
0, 27, 100, 73, 16, 1;
...
-
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n-i, t, k)*k
+b(n-i, t, k+1))(min(n-i, i-1))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..20);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0,
If[n == 0, x^k, b[n, i-1, k] + With[{t = Min[n-i, i-1]},
b[n-i, t, k]*k + b[n-i, t, k+1]]]];
T[n_] := CoefficientList[b[n, n, 0], x];
T /@ Range[0, 20] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)
A330765
Total number of blocks in all set partitions of strict integer partitions of n.
Original entry on oeis.org
0, 1, 1, 4, 4, 7, 17, 20, 30, 43, 90, 103, 160, 210, 304, 515, 646, 894, 1223, 1659, 2176, 3484, 4226, 5873, 7638, 10335, 13150, 17695, 24974, 31394, 41383, 53766, 69718, 89573, 115613, 146344, 201625, 247880, 322099, 406445, 524634, 654298, 839584, 1043012
Offset: 0
-
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n-i, t, k)*k
+b(n-i, t, k+1))(min(n-i, i-1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, k, b[n, i-1, k] + b[n-i, #, k] k + b[n-i, #, k+1]&[Min[n-i, i-1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, May 08 2020, after Maple *)
Showing 1-7 of 7 results.
Comments