cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A330759 Number T(n,k) of set partitions into k blocks of strict integer partitions of n; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 0, 4, 5, 1, 0, 5, 6, 1, 0, 6, 9, 2, 0, 8, 13, 3, 0, 10, 23, 10, 1, 0, 12, 27, 11, 1, 0, 15, 40, 19, 2, 0, 18, 51, 26, 3, 0, 22, 71, 40, 5, 0, 27, 100, 73, 16, 1, 0, 32, 127, 93, 19, 1, 0, 38, 163, 132, 31, 2, 0, 46, 215, 184, 45, 3
Offset: 0

Views

Author

Alois P. Heinz, Dec 29 2019

Keywords

Examples

			T(10,1) = 10: (10), 1234, 127, 136, 145, 19, 235, 28, 37, 46.
T(10,2) = 23: 123|4, 124|3, 12|34, 12|7, 134|2, 13|24, 13|6, 14|23, 14|5, 15|4, 16|3, 17|2, 1|234, 1|27, 1|36, 1|45, 1|9, 23|5, 25|3, 2|35, 2|8, 3|7, 4|6.
T(10,3) = 10: 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3, 1|2|34, 1|2|7, 1|3|6, 1|4|5, 2|3|5.
T(10,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1;
  0,  2,   1;
  0,  2,   1;
  0,  3,   2;
  0,  4,   5,  1;
  0,  5,   6,  1;
  0,  6,   9,  2;
  0,  8,  13,  3;
  0, 10,  23, 10,  1;
  0, 12,  27, 11,  1;
  0, 15,  40, 19,  2;
  0, 18,  51, 26,  3;
  0, 22,  71, 40,  5;
  0, 27, 100, 73, 16, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000009 (for n>0).
Row sums give A294617.
Cf. A000041, A000096, A000217, A003056, A072706, A330460 (another version), A330765.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n-i, t, k)*k
            +b(n-i, t, k+1))(min(n-i, i-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0,
         If[n == 0, x^k, b[n, i-1, k] + With[{t = Min[n-i, i-1]},
         b[n-i, t, k]*k + b[n-i, t, k+1]]]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    T /@ Range[0, 20] // Flatten (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..2} T(n,k) = A072706(n).
Sum_{k=1..A003056(n)} k * T(n,k) = A330765(n).
T(A000217(n),n) = 1.
T(A000096(n),n) = A000041(n).
T(n*(n+1)/2+j,n) = A000041(j) for 0 <= j <= n.
Showing 1-1 of 1 results.