A358906
Number of finite sequences of distinct integer partitions with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
Offset: 0
The a(1) = 1 through a(4) = 13 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(11)) ((1)(3))
((11)(1)) ((3)(1))
((11)(2))
((1)(21))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
This is the case of
A055887 with distinct partitions.
The case of twice-partitions is
A296122.
The version for sequences of compositions is
A358907.
The case of weakly decreasing lengths is
A358908.
The case of distinct lengths is
A358912.
The version for strict partitions is
A358913, distinct case of
A304969.
A001970 counts multiset partitions of integer partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
-
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 13 2024
-
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]
A330462
Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 1 0
0 2 1 0
0 2 2 0 0
0 3 4 0 0 0
0 4 6 2 0 0 0
0 5 11 3 0 0 0 0
0 6 16 8 0 0 0 0 0
0 8 25 15 1 0 0 0 0 0
0 10 35 28 4 0 0 0 0 0 0
...
Row n = 7 counts the following set-systems:
{{7}} {{1},{6}} {{1},{2},{4}}
{{1,6}} {{2},{5}} {{1},{2},{1,3}}
{{2,5}} {{3},{4}} {{1},{3},{1,2}}
{{3,4}} {{1},{1,5}}
{{1,2,4}} {{1},{2,4}}
{{2},{1,4}}
{{2},{2,3}}
{{3},{1,3}}
{{4},{1,2}}
{{1},{1,2,3}}
{{1,2},{1,3}}
Cf.
A001970,
A050343,
A063834,
A270995,
A271619,
A279375,
A279785,
A283877,
A294617,
A326031,
A330456,
A330460,
A330463,
A360764.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
-
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
{my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
A330452
Number of set partitions of strict multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 2, 7, 13, 34, 81, 175, 403, 890, 1977, 4262, 9356, 19963, 42573, 90865, 191206, 401803, 837898, 1744231, 3607504, 7436628, 15254309, 31185686, 63552725, 128963236, 260933000, 526140540, 1057927323, 2120500885, 4239012067, 8449746787, 16799938614
Offset: 0
The a(4) = 13 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((21))
((2))((11))
Cf.
A001970,
A007713,
A050343,
A063834,
A089259,
A261049,
A271619,
A279375,
A294617,
A318565,
A323787-
A323795,
A330452-
A330459,
A330460.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
-
\\ here BellP is A000110 as series.
BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ Andrew Howroyd, Dec 29 2019
A330460
Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 0, 0, 0, 0, 4, 5, 1, 0, 0, 0, 0, 5, 6, 1, 0, 0, 0, 0, 0, 6, 9, 2, 0, 0, 0, 0, 0, 0, 8, 13, 3, 0, 0, 0, 0, 0, 0, 0, 10, 23, 10, 1, 0, 0, 0, 0, 0, 0, 0, 12, 27, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 15, 40, 19, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
0 1
0 1 0
0 2 1 0
0 2 1 0 0
0 3 2 0 0 0
0 4 5 1 0 0 0
0 5 6 1 0 0 0 0
0 6 9 2 0 0 0 0 0
0 8 13 3 0 0 0 0 0 0
0 10 23 10 1 0 0 0 0 0 0
0 12 27 11 1 0 0 0 0 0 0 0
0 15 40 19 2 0 0 0 0 0 0 0 0
Row n = 8 counts the following set partitions:
{{8}} {{1},{7}} {{1},{2},{5}}
{{3,5}} {{2},{6}} {{1},{3},{4}}
{{2,6}} {{3},{5}}
{{1,7}} {{1},{3,4}}
{{1,3,4}} {{1},{2,5}}
{{1,2,5}} {{2},{1,5}}
{{3},{1,4}}
{{4},{1,3}}
{{5},{1,2}}
Cf.
A000110,
A008277,
A050342,
A060016,
A072706,
A270995,
A271619,
A279375,
A279785,
A326701,
A330459,
A330462,
A330463,
A330759.
-
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 k*
b(n-i, t, k)+b(n-i, t, k+1))(min(n-i, i-1))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
seq(T(n), n=0..15); # Alois P. Heinz, Dec 29 2019
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,2],Length[#]==k&&And[UnsameQ@@#,UnsameQ@@Join@@#]&]],{n,0,10},{k,0,n}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, x^k, b[n, i-1, k] + Function[t, k*b[n-i, t, k] + b[n-i, t, k + 1]][Min[n-i, i-1]]]];
T[n_] := PadRight[CoefficientList[b[n, n, 0], x], n + 1];
T /@ Range[0, 15] // Flatten (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)
-
A(n)={my(v=Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n)))); vector(#v, n, my(p=v[n]); vector(n, k, sum(i=k, n, polcoef(p,i-1)*stirling(i-1, k-1, 2))))}
{my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
A360742
Number T(n,k) of sets of nonempty integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 2, 0, 1, 4, 6, 5, 3, 0, 1, 5, 10, 10, 7, 4, 0, 1, 6, 14, 19, 16, 10, 5, 0, 1, 7, 19, 30, 32, 24, 14, 6, 0, 1, 8, 26, 46, 57, 52, 35, 19, 8, 0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10, 0, 1, 10, 40, 93, 147, 172, 157, 117, 69, 33, 12
Offset: 0
T(6,3) = 10: {[1,1,4]}, {[1,2,3]}, {[2,2,2]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[2],[2,2]}, {[3],[1,2]}, {[4],[1,1]}, {[1],[2],[3]}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 2;
0, 1, 3, 3, 2;
0, 1, 4, 6, 5, 3;
0, 1, 5, 10, 10, 7, 4;
0, 1, 6, 14, 19, 16, 10, 5;
0, 1, 7, 19, 30, 32, 24, 14, 6;
0, 1, 8, 26, 46, 57, 52, 35, 19, 8;
0, 1, 9, 32, 67, 94, 97, 79, 50, 25, 10;
...
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n, k), k=0..n), n=0..12);
-
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[ g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
T[n_, k_] := Coefficient[b[n, n], x, k];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 15 2023, after Alois P. Heinz *)
A330453
Number of strict multiset partitions of multiset partitions of integer partitions of n.
Original entry on oeis.org
1, 1, 3, 9, 23, 62, 161, 410, 1031, 2579, 6359, 15575, 37830, 91241, 218581, 520544, 1232431, 2902644, 6802178, 15866054, 36844016, 85202436, 196251933, 450341874, 1029709478, 2346409350, 5329371142, 12066816905, 27240224766, 61317231288, 137643961196
Offset: 0
The a(4) = 23 partitions:
((4)) ((22)) ((31)) ((211)) ((1111))
((2)(2)) ((1)(3)) ((1)(21)) ((1)(111))
((1))((3)) ((2)(11)) ((11)(11))
((1)(1)(2)) ((1))((111))
((1))((21)) ((1)(1)(11))
((2))((11)) ((1))((1)(11))
((1))((1)(2)) ((1)(1)(1)(1))
((2))((1)(1)) ((11))((1)(1))
((1))((1)(1)(1))
The not necessarily strict case is
A007713.
Cf.
A001055,
A001970,
A050336,
A050343,
A089259,
A261049,
A271619,
A316980,
A318566,
A323787-
A323795,
A330452-
A330459,
A330461,
A330463.
-
with(numtheory): with(combinat):
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d)
*d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n)
end:
seq(a(n), n=0..32); # Alois P. Heinz, Jul 18 2021
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]
A330454
Number of sets of nonempty sets of nonempty multisets of positive integers with total sum n.
Original entry on oeis.org
1, 1, 2, 7, 15, 39, 94, 224, 526, 1236, 2857, 6568, 15003, 34030, 76757, 172216, 384386, 853960, 1888891, 4160524, 9128355, 19953661, 43463021, 94354292, 204182435, 440505489, 947590424, 2032730905, 4348897216, 9280361316, 19755155955, 41953293592, 88891338202
Offset: 0
The a(4) = 15 partitions:
((4)) ((22)) ((13)) ((112)) ((1111))
((1)(3)) ((1)(12)) ((1)(111))
((1))((3)) ((2)(11)) ((1))((111))
((1))((12)) ((1))((1)(11))
((2))((11))
((1))((1)(2))
Cf.
A001970,
A007713,
A050336,
A050342,
A050343,
A261049,
A271619,
A279785,
A330461,
A330463,
A323787-
A323795,
A330452-
A330459.
-
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
Table[Length[Select[ppl[n,3],And[UnsameQ@@#,And@@UnsameQ@@@#]&]],{n,0,10}]
Showing 1-7 of 7 results.
Comments