A339645 Triangle read by rows: T(n,k) is the number of inequivalent colorings of lone-child-avoiding rooted trees with n colored leaves using exactly k colors.
1, 1, 1, 2, 3, 2, 5, 17, 12, 5, 12, 73, 95, 44, 12, 33, 369, 721, 512, 168, 33, 90, 1795, 5487, 5480, 2556, 625, 90, 261, 9192, 41945, 58990, 36711, 12306, 2342, 261, 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766, 2312, 249164, 2483192, 6593103, 7141755, 3965673, 1283624, 258887, 32313, 2312
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 3, 2; 5, 17, 12, 5; 12, 73, 95, 44, 12; 33, 369, 721, 512, 168, 33; 90, 1795, 5487, 5480, 2556, 625, 90; 261, 9192, 41945, 58990, 36711, 12306, 2342, 261; 766, 47324, 321951, 625088, 516952, 224241, 57155, 8702, 766; ... From _Gus Wiseman_, Jan 02 2021: (Start) Non-isomorphic representatives of the 39 = 5 + 17 + 12 + 5 trees with four colored leaves: (1111) (1112) (1123) (1234) (1(111)) (1122) (1(123)) (1(234)) (11(11)) (1(112)) (11(23)) (12(34)) ((11)(11)) (11(12)) (12(13)) ((12)(34)) (1(1(11))) (1(122)) (2(113)) (1(2(34))) (11(22)) (23(11)) (12(11)) ((11)(23)) (12(12)) (1(1(23))) (2(111)) ((12)(13)) ((11)(12)) (1(2(13))) (1(1(12))) (2(1(13))) ((11)(22)) (2(3(11))) (1(1(22))) (1(2(11))) ((12)(12)) (1(2(12))) (2(1(11))) (End)
Links
- Andrew Howroyd, PARI Functions for Combinatorial Species, v2, Dec 2020.
- Wikipedia, Combinatorial species
Crossrefs
The case with only one color is A000669.
Counting by nodes gives A318231.
A labeled version is A319376.
Row sums are A330470.
A000311 counts singleton-reduced phylogenetic trees.
A001678 counts unlabeled lone-child-avoiding rooted trees.
A005804 counts phylogenetic rooted trees with n labels.
A060356 counts labeled lone-child-avoiding rooted trees.
A141268 counts lone-child-avoiding rooted trees with leaves summing to n.
A291636 lists Matula-Goebel numbers of lone-child-avoiding rooted trees.
A316651 counts lone-child-avoiding rooted trees with normal leaves.
A316652 counts lone-child-avoiding rooted trees with strongly normal leaves.
A330465 counts inequivalent leaf-colorings of phylogenetic rooted trees.
Programs
-
PARI
\\ See link above for combinatorial species functions. cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n )); x*Ser(v)} {my(A=InequivalentColoringsTriangle(cycleIndexSeries(10))); for(n=1, #A~, print(A[n,1..n]))}
Comments