cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A300660 Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
Offset: 0

Views

Author

Alois P. Heinz, Jun 18 2018

Keywords

Comments

From Gus Wiseman, Jul 31 2018 and Feb 06 2020: (Start)
a(n) is the number of lone-child-avoiding rooted identity trees whose leaves form an integer partition of n. For example, the following are the a(6) = 13 lone-child-avoiding rooted identity trees whose leaves form an integer partition of 6.
6,
(15),
(24),
(123), (1(23)), (2(13)), (3(12)),
(1(14)),
(1(1(13))),
(12(12)), (1(2(12))), (2(1(12))),
(1(1(1(12)))).
(End)

Examples

			:   a(3) = 2:        :   a(4) = 3:                      :
:      o       o     :        o         o        o      :
:     / \     /|\    :       / \       / \     /( )\    :
:    o   N   N N N   :      o   N     o   N   N N N N   :
:   ( )              :     / \       /|\                :
:   N N              :    o   N     N N N               :
:                    :   ( )                            :
:                    :   N N                            :
From _Gus Wiseman_, Feb 06 2020: (Start)
The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees:
  (oo) (ooo)     (oooo)         (ooooo)             (oooooo)
       ((o)(oo)) ((o)(ooo))     ((o)(oooo))         ((o)(ooooo))
                 ((o)((o)(oo))) ((oo)(ooo))         ((oo)(oooo))
                                ((o)((o)(ooo)))     ((o)(oo)(ooo))
                                ((oo)((o)(oo)))     (((o)(oo))(ooo))
                                ((o)((o)((o)(oo)))) ((o)((o)(oooo)))
                                                    ((o)((oo)(ooo)))
                                                    ((oo)((o)(ooo)))
                                                    ((o)(oo)((o)(oo)))
                                                    ((o)((o)((o)(ooo))))
                                                    ((o)((oo)((o)(oo))))
                                                    ((oo)((o)((o)(oo))))
                                                    ((o)((o)((o)((o)(oo)))))
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)))
        end:
    a:= n-> `if`(n=0, 0, 1+b(n, n-1)):
    seq(a(n), n=0..30);
  • Mathematica
    b[0, ] = 1; b[, _?NonPositive] = 0;
    b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}];
    a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *)
    ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[ursit[n]],{n,10}] (* Gus Wiseman, Feb 06 2020 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018

A331683 One and all numbers of the form 2^k * prime(j) for k > 0 and j already in the sequence.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 152, 172, 212, 214, 224, 256, 262, 304, 326, 344, 424, 428, 448, 512, 524, 526, 608, 622, 652, 688, 766, 848, 856, 886, 896, 1024, 1048, 1052, 1154, 1216, 1226, 1244, 1304, 1376, 1438, 1532, 1696
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2020

Keywords

Comments

Also Matula-Goebel numbers of lone-child-avoiding rooted trees at with at most one non-leaf branch under any given vertex. A rooted tree is lone-child-avoiding if there are no unary branchings. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of the root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Also Matula-Goebel numbers of lone-child-avoiding locally disjoint semi-identity trees. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct.

Examples

			The sequence of all lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
  224: (ooooo(oo))
		

Crossrefs

These trees counted by number of vertices are A212804.
The semi-lone-child-avoiding version is A331681.
The non-semi-identity version is A331871.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Unlabeled semi-identity trees are counted by A306200, with Matula-Goebel numbers A306202.
Locally disjoint rooted trees are counted by A316473.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.
Lone-child-avoiding locally disjoint rooted trees by leaves are A316697.

Programs

  • Maple
    N:= 10^4: # for terms <= N
    S:= {1}:
    with(queue):
    Q:= new(1):
    while not empty(Q) do
      r:= dequeue(Q);
      p:= ithprime(r);
      newS:= {seq(2^i*p,i=1..ilog2(N/p))} minus S;
      S:= S union newS;
      for s in newS do enqueue(Q,s) od:
    od:
    sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • Mathematica
    uryQ[n_]:=n==1||MatchQ[FactorInteger[n],({{2,},{p,1}}/;uryQ[PrimePi[p]])|({{2,k_}}/;k>1)];
    Select[Range[100],uryQ]

Formula

Intersection of A291636, A316495, and A306202.

A316694 Number of lone-child-avoiding locally disjoint rooted identity trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 28, 62, 143, 338, 804, 1948, 4789, 11886, 29796, 75316, 191702, 491040, 1264926, 3274594, 8514784, 22229481, 58243870
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(7) = 28 rooted trees:
  7,
  (16),
  (25),
  (1(15)),
  (34),
  (1(24)), (2(14)), (4(12)), (124),
  (1(1(14))),
  (3(13)),
  (2(23)),
  (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), (12(13)), (13(12)),
  (1(1(1(13)))),
  (2(2(12))),
  (1(1(2(12)))), (1(2(1(12)))), (1(12(12))), (2(1(1(12)))), (12(1(12))),
  (1(1(1(1(12))))).
Missing from this list but counted by A300660 are ((12)(13)) and ((12)(1(12))).
		

Crossrefs

The semi-identity tree version is A212804.
Not requiring local disjointness gives A300660.
The non-identity tree version is A316696.
This is the case of A331686 where all leaves are singletons.
Rooted identity trees are A004111.
Locally disjoint rooted identity trees are A316471.
Lone-child-avoiding locally disjoint rooted trees are A331680.
Locally disjoint enriched identity p-trees are A331684.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],And[UnsameQ@@#,disjointQ[#]]&],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(21)-a(23) from Robert Price, Sep 16 2018
Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]

Examples

			The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
    1: {}                 224: {1,1,1,1,1,4}
    4: {1,1}              256: {1,1,1,1,1,1,1,1}
    8: {1,1,1}            262: {1,32}
   14: {1,4}              266: {1,4,8}
   16: {1,1,1,1}          301: {4,14}
   28: {1,1,4}            304: {1,1,1,1,8}
   32: {1,1,1,1,1}        326: {1,38}
   38: {1,8}              344: {1,1,1,14}
   56: {1,1,1,4}          371: {4,16}
   64: {1,1,1,1,1,1}      424: {1,1,1,16}
   76: {1,1,8}            428: {1,1,28}
   86: {1,14}             448: {1,1,1,1,1,1,4}
  106: {1,16}             512: {1,1,1,1,1,1,1,1,1}
  112: {1,1,1,1,4}        524: {1,1,32}
  128: {1,1,1,1,1,1,1}    526: {1,56}
  133: {4,8}              532: {1,1,4,8}
  152: {1,1,1,8}          602: {1,4,14}
  172: {1,1,14}           608: {1,1,1,1,1,8}
  212: {1,1,16}           622: {1,64}
  214: {1,28}             652: {1,1,38}
		

Crossrefs

The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.

Programs

  • Mathematica
    csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],csiQ]

Formula

Intersection of A291636 and A306202.

A331966 Number of lone-child-avoiding rooted semi-identity trees with n vertices.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 9, 16, 30, 55, 105, 200, 388, 754, 1483, 2923, 5807, 11575, 23190, 46608, 94043, 190287, 386214, 785831, 1602952, 3276845, 6712905, 13778079, 28330583, 58350582, 120370731, 248676129, 514459237, 1065696295, 2210302177, 4589599429, 9540623926
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(9) = 16 trees (empty column shown as dot):
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)    (oooooooo)
                     (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))   (o(oooooo))
                              (oo(oo))  (oo(ooo))   (oo(oooo))   (oo(ooooo))
                                        (ooo(oo))   (ooo(ooo))   (ooo(oooo))
                                        (o(o(oo)))  (oooo(oo))   (oooo(ooo))
                                                    ((oo)(ooo))  (ooooo(oo))
                                                    (o(o(ooo)))  ((oo)(oooo))
                                                    (o(oo(oo)))  (o(o(oooo)))
                                                    (oo(o(oo)))  (o(oo)(ooo))
                                                                 (o(oo(ooo)))
                                                                 (o(ooo(oo)))
                                                                 (oo(o(ooo)))
                                                                 (oo(oo(oo)))
                                                                 (ooo(o(oo)))
                                                                 ((oo)(o(oo)))
                                                                 (o(o(o(oo))))
		

Crossrefs

The non-semi case is A000007.
Lone-child-avoiding rooted trees are A001678.
The locally disjoint case is A212804.
Not requiring lone-child-avoidance gives A306200.
Matula-Goebel numbers of these trees are A331965.
The semi-lone-child-avoiding version is A331993.

Programs

  • Mathematica
    ssb[n_]:=If[n==1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[ssb/@c]],UnsameQ@@DeleteCases[#,{}]&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[ssb[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[0, 0]); for(n=2, n-1, v=concat(v, 1 + vecsum(WeighT(v)) - v[n])); v[1]=1; v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A316696 Number of lone-child-avoiding locally disjoint rooted trees whose leaves form an integer partition of n.

Original entry on oeis.org

1, 2, 4, 11, 27, 80, 218, 654, 1923, 5924, 18310, 58176, 186341, 606814, 1993420, 6618160, 22134640
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2018

Keywords

Comments

A rooted tree is lone-child-avoiding if every non-leaf node has at least two branches. It is locally disjoint if no branch overlaps any other (unequal) branch of the same root.

Examples

			The a(4) = 11 rooted trees:
  4,
  (13),
  (22),
  (1(12)), (2(11)), (112),
  (1(1(11))), (1(111)), ((11)(11)), (11(11)), (1111).
		

Crossrefs

Matula-Goebel numbers of locally disjoint rooted trees are A316495.
The case where all leaves are 1's is A316697.
Lone-child-avoiding locally disjoint rooted trees are A331680.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    nms[n_]:=nms[n]=Prepend[Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],disjointQ],{ptn,Rest[IntegerPartitions[n]]}],{n}];
    Table[Length[nms[n]],{n,10}]

Extensions

a(16)-a(17) from Robert Price, Sep 16 2018
Terminology corrected by Gus Wiseman, Feb 06 2020

A331872 Number of semi-lone-child-avoiding locally disjoint rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 19, 35, 59, 104, 179, 318, 556, 993, 1772, 3202, 5807, 10643, 19594, 36380, 67915
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 1 through a(8) = 19 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)     (ooooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))    (o(ooooo))
                        (oo(o))   (oo(oo))   (oo(ooo))    (oo(oooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))    (ooo(ooo))
                                  (o(o)(o))  (oooo(o))    (oooo(oo))
                                  (o(o(o)))  ((oo)(oo))   (ooooo(o))
                                             (o(o(oo)))   (o(o(ooo)))
                                             (o(oo(o)))   (o(oo)(oo))
                                             (oo(o)(o))   (o(oo(oo)))
                                             (oo(o(o)))   (o(ooo(o)))
                                             ((o)(o)(o))  (oo(o(oo)))
                                             (o((o)(o)))  (oo(oo(o)))
                                                          (ooo(o)(o))
                                                          (ooo(o(o)))
                                                          (o(o)(o)(o))
                                                          (o(o(o)(o)))
                                                          (o(o(o(o))))
                                                          (oo((o)(o)))
                                                          ((o)((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A316473.
The non-semi version is A331680.
The Matula-Goebel numbers of these trees are A331873.
The same trees counted by number of leaves are A331874.
Not requiring local disjointness gives A331934.
Lone-child-avoiding rooted trees are A001678.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    strutsemi[n_]:=If[n==1,{{}},If[n==2,{{{}}},Select[Join@@Function[c,Union[Sort/@Tuples[strutsemi/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]];
    Table[Length[strutsemi[n]],{n,8}]

A331875 Number of enriched identity p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 3, 6, 14, 32, 79, 198, 522, 1368, 3716, 9992, 27612, 75692, 212045, 589478, 1668630, 4690792, 13387332, 37980664, 109098556, 311717768, 900846484, 2589449032, 7515759012, 21720369476, 63305262126, 183726039404, 537364221200, 1565570459800, 4592892152163
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

An enriched identity p-tree of weight n is either the number n itself or a finite sequence of distinct enriched identity p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(6) = 14 enriched p-trees:
  1  2  3     4        5           6
        (21)  (31)     (32)        (42)
              ((21)1)  (41)        (51)
                       ((21)2)     (321)
                       ((31)1)     ((21)3)
                       (((21)1)1)  ((31)2)
                                   ((32)1)
                                   (3(21))
                                   ((41)1)
                                   ((21)21)
                                   (((21)1)2)
                                   (((21)2)1)
                                   (((31)1)1)
                                   ((((21)1)1)1)
		

Crossrefs

The orderless version is A300660.
The locally disjoint case is A331684.
Identity trees are A004111.
P-trees are A196545.
Enriched p-trees are A289501.

Programs

  • Mathematica
    eptrid[n_]:=Prepend[Select[Join@@Table[Tuples[eptrid/@p],{p,Rest[IntegerPartitions[n]]}],UnsameQ@@#&],n];
    Table[Length[eptrid[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, sum(j=0, n\k, j!*binomial(v[k],j)*x^(k*j)) + O(x*x^n)), n)); v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 09 2020

A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.

Examples

			The a(1) = 1 through a(4) = 18 trees:
  (1)  (2)       (3)            (4)
       (11)      (12)           (13)
       ((1)(1))  (111)          (22)
                 ((1)(2))       (112)
                 ((1)(1)(1))    (1111)
                 ((1)((1)(1)))  ((1)(3))
                                ((2)(2))
                                ((2)(11))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A331687 Number of locally disjoint enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 12, 29, 93, 249, 803, 2337, 7480, 23130, 77372, 247598, 834507, 2762222
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(4) = 12 enriched p-trees:
  1  2     3        4
     (11)  (21)     (22)
           (111)    (31)
           ((11)1)  (211)
                    (1111)
                    ((11)2)
                    ((21)1)
                    (2(11))
                    ((11)11)
                    ((111)1)
                    (((11)1)1)
                    ((11)(11))
		

Crossrefs

The orderless version is A316696.
The identity case is A331684.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldep[n]],{n,10}]
Showing 1-10 of 15 results. Next