cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
Offset: 0

Views

Author

Max Alekseyev, Nov 13 2009

Keywords

Comments

Number of lone-child-avoiding achiral rooted trees with n + 1 vertices, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given vertex are equal. The Matula-Goebel numbers of these trees are given by A331967. - Gus Wiseman, Feb 07 2020

Examples

			a(12) = 4: [12], [10,2], [9,3], [8,4].
a(14) = 3: [14], [12,2], [8,4,2].
a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:
  (oooooooooooooooooooooooooooooooooooo)
  ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))
  ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))
  ((oooooooo)(oooooooo)(oooooooo)(oooooooo))
  (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))
  ((ooooooooooo)(ooooooooooo)(ooooooooooo))
  ((ooooooooooooooooo)(ooooooooooooooooo))
(End)
		

Crossrefs

The semi-achiral version is A320268.
Matula-Goebel numbers of these trees are A331967.
The semi-lone-child-avoiding version is A331991.
Achiral rooted trees are counted by A003238.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))
        end:
    seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011
  • Mathematica
    a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 07 2015 *)
  • PARI
    { A167865(n) = if(n==0,return(1)); sumdiv(n,d, if(d>1, A167865((n-d)\d) ) ) }

Formula

a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019

A040039 First differences of A033485; also A033485 with terms repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 13, 18, 18, 23, 23, 30, 30, 37, 37, 47, 47, 57, 57, 70, 70, 83, 83, 101, 101, 119, 119, 142, 142, 165, 165, 195, 195, 225, 225, 262, 262, 299, 299, 346, 346, 393, 393, 450, 450, 507, 507, 577, 577, 647, 647, 730, 730, 813, 813, 914, 914, 1015, 1015, 1134, 1134, 1253, 1253, 1395, 1395
Offset: 0

Views

Author

Keywords

Comments

Apparently a(n) = number of partitions (p_1, p_2, ..., p_k) of n+1, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i > p_{i+1}+...+p_k. - John McKay (mac(AT)mathstat.concordia.ca), Mar 06 2009
Comment from John McKay confirmed in paper by Bessenrodt, Olsson, and Sellers. Such partitions are called "strongly decreasing" partitions in the paper, see the function s(n) therein.
Also the number of unlabeled binary rooted trees with 2*n + 3 nodes in which the two branches directly under any given non-leaf node are either equal or at least one of them is a leaf. - Gus Wiseman, Oct 08 2018
From Gus Wiseman, Apr 06 2021: (Start)
This sequence counts both of the following essentially equivalent things:
1. Sets of distinct positive integers with maximum n + 1 in which all adjacent elements have quotients < 1/2. For example, the a(0) = 1 through a(8) = 7 subsets are:
{1} {2} {3} {4} {5} {6} {7} {8} {9}
{1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {1,9}
{2,5} {2,6} {2,7} {2,8} {2,9}
{3,7} {3,8} {3,9}
{1,3,7} {1,3,8} {4,9}
{1,3,9}
{1,4,9}
2. Sets of distinct positive integers with maximum n + 1 whose first differences are term-wise greater than their decapitation (remove the maximum). For example, the set q = {1,4,9} has first differences (3,5), which are greater than (1,4), so q is counted under a(8). On the other hand, r = {1,5,9} has first differences (4,4), which are not greater than (1,5), so r is not counted under a(8).
Also the number of partitions of n + 1 into powers of 2 covering an initial interval of powers of 2. For example, the a(0) = 1 through a(8) = 7 partitions are:
1 11 21 211 221 2211 421 4211 4221
111 1111 2111 21111 2221 22211 22221
11111 111111 22111 221111 42111
211111 2111111 222111
1111111 11111111 2211111
21111111
111111111
(End)

Examples

			From _Joerg Arndt_, Dec 17 2012: (Start)
The a(19-1)=30 strongly decreasing partitions of 19 are (in lexicographic order)
[ 1]    [ 10 5 3 1 ]
[ 2]    [ 10 5 4 ]
[ 3]    [ 10 6 2 1 ]
[ 4]    [ 10 6 3 ]
[ 5]    [ 10 7 2 ]
[ 6]    [ 10 8 1 ]
[ 7]    [ 10 9 ]
[ 8]    [ 11 5 2 1 ]
[ 9]    [ 11 5 3 ]
[10]    [ 11 6 2 ]
[11]    [ 11 7 1 ]
[12]    [ 11 8 ]
[13]    [ 12 4 2 1 ]
[14]    [ 12 4 3 ]
[15]    [ 12 5 2 ]
[16]    [ 12 6 1 ]
[17]    [ 12 7 ]
[18]    [ 13 4 2 ]
[19]    [ 13 5 1 ]
[20]    [ 13 6 ]
[21]    [ 14 3 2 ]
[22]    [ 14 4 1 ]
[23]    [ 14 5 ]
[24]    [ 15 3 1 ]
[25]    [ 15 4 ]
[26]    [ 16 2 1 ]
[27]    [ 16 3 ]
[28]    [ 17 2 ]
[29]    [ 18 1 ]
[30]    [ 19 ]
The a(20-1)=30 strongly decreasing partitions of 20 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _Gus Wiseman_, Oct 08 2018: (Start)
The a(-1) = 1 through a(4) = 3 semichiral binary rooted trees:
  o  (oo)  (o(oo))  ((oo)(oo))  (o((oo)(oo)))  ((o(oo))(o(oo)))
                    (o(o(oo)))  (o(o(o(oo))))  (o(o((oo)(oo))))
                                               (o(o(o(o(oo)))))
(End)
		

Crossrefs

Cf. A000123.
The equal case is A001511.
The reflected version is A045690.
The unequal (anti-run) version is A045691.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A018819 counts partitions into powers of 2.
A154402 counts partitions with all adjacent parts x = 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342094 counts partitions with all adjacent parts x <= 2y (strict: A342095).
A342096 counts partitions without adjacent x >= 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.
A342337 counts partitions with all adjacent parts x = y or x = 2y.

Programs

  • Maple
    # For example, the five partitions of 4, written in nonincreasing order, are
    # [1,1,1,1], [2,1,1], [2,2], [3,1], [4].
    # Only the last two satisfy the condition, and a(3)=2.
    # The Maple program below verifies this for small values of n.
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    #while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od;
    # John McKay
  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Binomial[n-2k-1, n-2k-m] Sum[Binomial[m, i] T[k, i], {i, 1, k}], {k, 0, (n-m)/2}] + Binomial[n-1, n-m];
    a[n_] := T[n+1, 1];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[#[[i-1]]/#[[i]]<1/2,{i,2,Length[#]}]&]],{n,15}] (* Gus Wiseman, Apr 06 2021 *)
  • Maxima
    T(n,m):=sum(binomial(n-2*k-1,n-2*k-m)*sum(binomial(m,i)*T(k,i),i,1,k),k,0,(n-m)/2)+binomial(n-1,n-m);
    makelist(T(n+1,1),n,0,40); /* Vladimir Kruchinin, Mar 19 2015 */
    
  • PARI
    /* compute as "A033485 with terms repeated" */
    b(n) = if(n<2, 1, b(floor(n/2))+b(n-1));  /* A033485 */
    a(n) = b(n\2+1); /* note different offsets */
    for(n=0,99, print1(a(n),", ")); /* Joerg Arndt, Jan 21 2011 */
    
  • Python
    from itertools import islice
    from collections import deque
    def A040039_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 1, 2, 2)
        while True:
            a += b
            yield from (a, a)
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A040039_list = list(islice(A040039_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

Let T(x) be the g.f, then T(x) = 1 + x/(1-x)*T(x^2) = 1 + x/(1-x) * ( 1 + x^2/(1-x^2) * ( 1 + x^4/(1-x^4) * ( 1 + x^8/(1-x^8) *(...) ))). [Joerg Arndt, May 11 2010]
From Joerg Arndt, Oct 02 2013: (Start)
G.f.: sum(k>=1, x^(2^k-1) / prod(j=0..k-1, 1-x^(2^k) ) ) [Bessenrodt/Olsson/Sellers].
G.f.: 1/(2*x^2) * ( 1/prod(k>=0, 1 - x^(2^k) ) - (1 + x) ).
a(n) = 1/2 * A018819(n+2).
(End)
a(n) = T(n+1,1), where T(n,m)=sum(k..0,(n-m)/2, binomial(n-2*k-1,n-2*k-m)*sum(i=1..k, binomial(m,i)*T(k,i)))+binomial(n-1,n-m). - Vladimir Kruchinin, Mar 19 2015
Using offset 1: a(1) = 1; a(n even) = a(n-1); a(n odd) = a(n-1) + a((n-1)/2). - Gus Wiseman, Oct 08 2018

A320230 Matula-Goebel numbers of rooted trees in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 36, 37, 38, 40, 41, 43, 44, 46, 48, 49, 50, 52, 53, 54, 56, 58, 59, 61, 62, 64, 67, 68, 71, 72, 74, 76, 79, 80, 81, 82, 83, 86, 88, 89, 92, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

A number is in the sequence iff it belongs to A070776 and its prime indices already belong to the sequence. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    smakQ[n_]:=And[SameQ@@DeleteCases[primeMS[n],1],And@@smakQ/@DeleteCases[primeMS[n],1]];Select[Range[100],smakQ[#]&]
  • PARI
    is(n) = while((n>>=valuation(n,2)) > 1, isprimepower(n,&n) || return(0); n=primepi(n)); 1; \\ Kevin Ryde, Apr 04 2021

A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

First differs from A331871 in lacking 1589.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
		

Crossrefs

The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331933 Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(8) = 18 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  (o(o)(o))  (oooo(o))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             (o((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    sseo[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sseo/@c]],Length[Union[DeleteCases[#,{}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sseo[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A320268 Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A167865).
A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 1 through a(8) = 9 rooted trees:
  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)
               (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))
                        (oo(oo))  (oo(ooo))   (oo(oooo))
                                  (ooo(oo))   (ooo(ooo))
                                  ((oo)(oo))  (oooo(oo))
                                  (o(o(oo)))  (o(o(ooo)))
                                              (o(oo)(oo))
                                              (o(oo(oo)))
                                              (oo(o(oo)))
		

Crossrefs

Programs

  • Mathematica
    saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}];
    Array[saum,20]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).

A320224 a(1) = 1; a(n > 1) = Sum_{k = 1..n-1} Sum_{d|k, d < k} a(d).

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 7, 10, 12, 16, 17, 25, 26, 33, 38, 48, 49, 65, 66, 84, 92, 109, 110, 142, 146, 172, 184, 219, 220, 274, 275, 323, 341, 390, 400, 484, 485, 551, 578, 669, 670, 792, 793, 904, 952, 1062, 1063, 1243, 1250, 1408, 1458, 1632, 1633, 1870, 1890
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Crossrefs

Programs

  • Magma
    sol:=[1]; for n in [2..56] do Append(~sol, &+[sol[d]*Floor((n-1)/d-1):d in [1..n-1]]); end for; sol; // Marius A. Burtea, Sep 07 2019
    
  • Mathematica
    sau[n_]:=If[n==1,1,Sum[sau[d],{k,n-1},{d,Most[Divisors[k]]}]];
    Table[sau[n],{n,60}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(k=1, n-1, v[k]*((n-1)\k - 1))); v} \\ Andrew Howroyd, Sep 07 2019

Formula

a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor((n-1)/d - 1).
G.f. A(x) satisfies A(x) = x + (x/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019

A320225 a(1) = 1; a(n > 1) = Sum_{k = 1..n} Sum_{d|k, d < k} a(d).

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 10, 16, 19, 26, 27, 44, 45, 57, 65, 87, 88, 120, 121, 158, 171, 200, 201, 278, 284, 331, 353, 426, 427, 536, 537, 646, 676, 766, 782, 982, 983, 1106, 1154, 1365, 1366, 1617, 1618, 1851, 1943, 2146, 2147, 2589, 2600, 2917, 3008, 3390, 3391
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    sau[n_]:=If[n==1,1,Sum[sau[d],{k,n},{d,Most[Divisors[k]]}]];
    Table[sau[n],{n,30}]
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A320225(n): return 1 if n == 1 else sum(A320225(d)*(n//d-1) for d in range(1,n)) # Chai Wah Wu, Jun 08 2022

Formula

a(1) = 1; a(n > 1) = Sum_{d = 1..n-1} a(d) * floor(n/d-1).
G.f. A(x) satisfies A(x) = x + (1/(1 - x)) * Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019

A331991 Number of semi-lone-child-avoiding achiral rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 4, 4, 1, 7, 1, 7, 5, 6, 1, 7, 3, 7, 5, 7, 1, 13, 1, 8, 6, 6, 6, 10, 1, 9, 7, 9, 1, 15, 1, 12, 12, 8, 1, 12, 4, 13, 6, 11, 1, 15, 7, 13, 9, 9, 1, 17, 1, 15, 15, 9, 8, 21, 1, 13, 8, 16, 1, 18, 1, 12, 16, 11, 8, 21, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.

Examples

			The a(n) trees for n = 2, 3, 5, 7, 11, 13:
  (o)  (oo)  (oooo)    (oooooo)     (oooooooooo)        (oooooooooooo)
             ((o)(o))  ((oo)(oo))   ((oooo)(oooo))      ((ooooo)(ooooo))
                       ((o)(o)(o))  ((o)(o)(o)(o)(o))   ((ooo)(ooo)(ooo))
                                    (((o)(o))((o)(o)))  ((oo)(oo)(oo)(oo))
                                                        ((o)(o)(o)(o)(o)(o))
		

Crossrefs

Matula-Goebel numbers of these trees are A331992.
The fully lone-child-avoiding case is A167865.
The semi-achiral version is A331933.
Not requiring achirality gives A331934.
The identity tree version is A331964.
The semi-identity tree version is A331993.
Achiral rooted trees are counted by A003238.
Lone-child-avoiding semi-achiral trees are A320268.

Programs

  • Mathematica
    ab[n_]:=If[n<=2,1,Sum[ab[d],{d,Most[Divisors[n-1]]}]];
    Array[ab,100]

Formula

a(1) = a(2) = 1; a(n + 1) = Sum_{d|n, d 1.
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 + x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020

A306269 Regular triangle read by rows where T(n,k) is the number of unlabeled balanced rooted semi-identity trees with n >= 1 nodes and depth 0 <= k < n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 3, 3, 2, 1, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 1, 0, 1, 5, 6, 5, 3, 2, 1, 1, 1, 0, 1, 5, 9, 7, 5, 3, 2, 1, 1, 1, 0, 1, 7, 12, 12, 8, 5, 3, 2, 1, 1, 1, 0, 1, 8, 17, 17, 13, 8, 5, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. It is balanced if all leaves are the same distance from the root.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  1  1  1
  0  1  2  1  1  1
  0  1  2  2  1  1  1
  0  1  3  3  2  1  1  1
  0  1  3  4  3  2  1  1  1
  0  1  5  6  5  3  2  1  1  1
  0  1  5  9  7  5  3  2  1  1  1
  0  1  7 12 12  8  5  3  2  1  1  1
  0  1  8 17 17 13  8  5  3  2  1  1  1
  0  1 10 25 26 20 14  8  5  3  2  1  1  1
  0  1 12 34 39 31 21 14  8  5  3  2  1  1  1
The postpositive terms of row 9 {3, 4, 3, 2} count the following trees:
  ((ooooooo))   (((oooooo)))    ((((ooooo))))    (((((oooo)))))
  ((o)(ooooo))  (((o)(oooo)))   ((((o)(ooo))))   (((((o)(oo)))))
  ((oo)(oooo))  (((oo)(ooo)))   ((((o))((oo))))
                (((o))((ooo)))
		

Crossrefs

Programs

  • Mathematica
    ubk[n_,k_]:=Select[Join@@Table[Select[Union[Sort/@Tuples[ubk[#,k-1]&/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}],SameQ[k,##]&@@Length/@Position[#,{}]&];
    Table[Length[ubk[n,k]],{n,1,10},{k,0,n-1}]
Showing 1-10 of 11 results. Next