cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A306200 Number of unlabeled rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 41, 98, 237, 591, 1488, 3805, 9820, 25593, 67184, 177604, 472177, 1261998, 3388434, 9136019, 24724904, 67141940, 182892368, 499608724, 1368340326, 3756651116, 10336434585, 28499309291, 78727891420, 217870037932, 603934911859, 1676720329410
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(7) = 8 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 29 2019
  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[ursit[n]],{n,10}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]];
    a[n_] := If[n == 0, 0, b[n - 1, n - 1]];
    a /@ Range[0, 35] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 29 2019

A317712 Number of uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 35, 72, 169, 388, 934, 2234, 5508, 13557, 33883, 85017, 215091, 546496, 1396524, 3582383, 9228470, 23852918, 61857180, 160871716, 419516462, 1096671326, 2873403980, 7544428973, 19847520789, 52308750878, 138095728065, 365153263313, 966978876376
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is uniform if the multiplicities of the branches directly under any given node are all equal.

Examples

			The a(5) = 8 uniform rooted trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  ((ooo))
  (o((o)))
  (o(oo))
  ((o)(o))
  (oooo)
		

Crossrefs

Programs

  • Mathematica
    purt[n_]:=Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],SameQ@@Length/@Split[#]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[purt[n]],{n,10}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sumdiv(n-1, d, t[d]))); v} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.774067238136373782458114960391469140405537808253... and c = 0.43338208953061974806801546569720246018271214... - Vaclav Kotesovec, Sep 07 2019

Extensions

Term a(21) and beyond from Andrew Howroyd, Aug 28 2018

A317710 Uniform tree numbers. Matula-Goebel numbers of uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 77, 78, 79, 81, 82, 83, 85, 86, 87, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],rupQ]

A317707 Number of powerful rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.

Examples

			The a(7) = 11 powerful rooted trees:
  ((((((o))))))
  (((((oo)))))
  ((((ooo))))
  ((((o)(o))))
  (((oooo)))
  ((ooooo))
  (((o))((o)))
  ((oo)(oo))
  ((o)(o)(o))
  (oo(o)(o))
  (oooooo)
		

Crossrefs

Programs

  • Maple
    h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
          `if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 31 2018
  • Mathematica
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,Min@@Length/@Split[#]>1]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}]
    (* Second program: *)
    h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
    Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

a(27)-a(45) from Alois P. Heinz, Aug 31 2018

A317705 Matula-Goebel numbers of series-reduced powerful rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 392, 512, 784, 1024, 1372, 1444, 1568, 2048, 2401, 2744, 2809, 2888, 3136, 4096, 5488, 5776, 6272, 6859, 8192, 9604, 10976, 11236, 11552, 12544, 16384, 16807, 17161, 17689, 19208, 21952, 22472, 23104, 25088
Offset: 1

Views

Author

Gus Wiseman, Aug 04 2018

Keywords

Comments

A positive integer n is a Matula-Goebel number of a series-reduced powerful rooted tree iff either n = 1 or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all Matula-Goebel numbers of series-reduced powerful rooted trees, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of Matula-Goebel numbers of series-reduced powerful rooted trees together with the corresponding trees begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  392: (ooo(oo)(oo))
  512: (ooooooooo)
  784: (oooo(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[1000],powgoQ] (* Gus Wiseman, Aug 31 2018 *)
    (* Second program: *)
    Nest[Function[a, Append[a, Block[{k = a[[-1]] + 1}, While[Nand[AllTrue[#[[All, -1]], # > 1 & ], AllTrue[PrimePi[#[[All, 1]] ], MemberQ[a, #] &]] &@ FactorInteger@ k, k++]; k]]], {1}, 44] (* Michael De Vlieger, Aug 05 2018 *)

Extensions

Rewritten by Gus Wiseman, Aug 31 2018

A317717 Uniform relatively prime tree numbers. Matula-Goebel numbers of uniform relatively prime rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 22, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 47, 51, 53, 55, 58, 59, 62, 64, 66, 67, 70, 77, 78, 79, 82, 85, 86, 93, 94, 95, 100, 101, 102, 105, 106, 109, 110, 113, 114, 118, 119, 123, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],rupQ]

A317711 Numbers that are not uniform tree numbers.

Original entry on oeis.org

12, 18, 20, 24, 28, 37, 40, 44, 45, 48, 50, 52, 54, 56, 60, 61, 63, 68, 71, 72, 74, 75, 76, 80, 84, 88, 89, 90, 92, 96, 98, 99, 104, 107, 108, 111, 112, 116, 117, 120, 122, 124, 126, 132, 135, 136, 140, 142, 144, 147, 148, 150, 152, 153, 156, 157, 160, 162
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  24: (ooo(o))
  28: (oo(oo))
  37: ((oo(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
  48: (oooo(o))
  50: (o((o))((o)))
  52: (oo(o(o)))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  60: (oo(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],!rupQ[#]&]

A319269 Number of uniform factorizations of n into factors > 1, where a factorization is uniform if all factors appear with the same multiplicity.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 7, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 9, 1, 2, 3, 8, 2, 5, 1, 3, 2, 5, 1, 9, 1, 2, 3, 3, 2, 5, 1, 7, 4, 2, 1, 9, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Examples

			The a(144) = 17 factorizations:
  (144),
  (2*72), (3*48), (4*36), (6*24), (8*18), (9*16), (12*12),
  (2*3*24), (2*4*18), (2*6*12), (2*8*9), (3*4*12), (3*6*8),
  (2*2*6*6), (2*3*4*6), (3*3*4*4).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],SameQ@@Length/@Split[#]&]],{n,100}]

Formula

a(n) = Sum_{d|A052409(n)} A045778(n^(1/d)).

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A318689 Number of powerful uniform rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 19, 23, 35, 36, 63, 64, 98, 112, 173, 174, 291, 292, 473, 509, 791, 792, 1345, 1356, 2158, 2257, 3634, 3635, 6053, 6054, 9807, 10091, 16173, 16216, 26783, 26784, 43076, 43880, 70631, 70632, 114975, 114976, 184665, 186996, 298644, 298645, 481978, 482011
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A powerful uniform rooted tree with n nodes is either a single powerful uniform branch with n-1 nodes, or a powerful uniform multiset (all multiplicities are equal to the same number > 1) of powerful uniform rooted trees with a total of n-1 nodes.

Examples

			The a(8) = 12 powerful uniform rooted trees:
  (((((((o)))))))
  ((((((oo))))))
  (((((o)(o)))))
  ((((o))((o))))
  (((((ooo)))))
  (((o)(o)(o)))
  ((((oooo))))
  (((oo)(oo)))
  ((oo(o)(o)))
  (((ooooo)))
  ((oooooo))
  (ooooooo)
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,And[Min@@Length/@Split[#]>=2,SameQ@@Length/@Split[#]]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, my(u=WeighT(v[1..n])); v[n+1] = sumdiv(n,d,u[d]) - u[n] + v[n]); v} \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 09 2020
Showing 1-10 of 11 results. Next