A317132 Number of permutations of [n] whose lengths of increasing runs are factorials.
1, 1, 2, 5, 17, 70, 350, 2029, 13495, 100813, 837647, 7652306, 76282541, 823684964, 9578815164, 119346454671, 1586149739684, 22397700381817, 334879465463998, 5285103821004717, 87800206978975107, 1531533620821692217, 27987305231654121046, 534688325008397289484
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
g:= proc(n) local i; 1; for i from 2 do if n=% then 1; break elif n<% then 0; break fi; %*i od; g(n):=% end: b:= proc(u, o, t) option remember; `if`(u+o=0, g(t), `if`(g(t)=1, add(b(u-j, o+j-1, 1), j=1..u), 0)+ add(b(u+j-1, o-j, t+1), j=1..o)) end: a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 1), j=1..n)): seq(a(n), n=0..27);
-
Mathematica
g[n_] := g[n] = Module[{i, k = 1}, For[i = 2, True, i++, If[n == k, k = 1; Break[]]; If[n < k, k = 0; Break[]]; k = k*i]; k]; b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, g[t], If[g[t] == 1, Sum[b[u - j, o + j - 1, 1], {j, 1, u}], 0] + Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}]]; a[n_] := If[n == 0, 1, Sum[b[j - 1, n - j, 1], {j, 1, n}]]; a /@ Range[0, 27] (* Jean-François Alcover, Mar 29 2021~, after Alois P. Heinz *)
Formula
a(3) = 5: 132, 213, 231, 312, 321.
a(4) = 17: 1324, 1423, 1432, 2143, 2314, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.