A317139 Number of permutations of [n] with exactly floor(n/2) increasing runs of length two.
1, 1, 1, 4, 5, 43, 61, 906, 1385, 31493, 50521, 1629248, 2702765, 117248463, 199360981, 11190963430, 19391512145, 1367267690953, 2404879675441, 208031951035452, 370371188237525, 38563334673062963, 69348874393137901, 8554779137299629314, 15514534163557086905
Offset: 0
Keywords
Examples
a(3) = 4: 132, 213, 231, 312. a(4) = 5: 1324, 1423, 2314, 2413, 3412.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..484
Programs
-
Maple
b:= proc(u, o, t, c) option remember; `if`(u+o=0, 1,`if`(t=1, add(b(u+j-1, o-j, t+1, c), j=1..o), 0)+`if`(t<>1 or t=1 and c=1, add(b(u-j, o+j-1, 1, `if`(t=1 and c=1, 0, c)), j=1..u), 0)) end: a:= n-> b(n, 0$2, irem(n, 2)): seq(a(n), n=0..30);
-
Mathematica
b[u_, o_, t_, c_] := b[u, o, t, c] = If[u + o == 0, 1, If[t == 1, Sum[b[u+j-1, o-j, t+1, c], {j, o}], 0] + If[t != 1 || t == 1 && c == 1, Sum[b[u-j, o+j-1, 1, If[t == 1 && c == 1, 0, c]], {j, u}], 0]]; a[n_] := b[n, 0, 0, Mod[n, 2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 31 2021, after Alois P. Heinz *)
Formula
a(n) = A097592(n,floor(n/2)).
a(n) is even <=> n == 3 (mod 4).