A317164 a(n) = 55837783597462913 + (n-1)*13858932213216090.
55837783597462913, 69696715810679003, 83555648023895093, 97414580237111183, 111273512450327273, 125132444663543363, 138991376876759453, 152850309089975543, 166709241303191633, 180568173516407723, 194427105729623813, 208286037942839903, 222144970156055993
Offset: 1
Examples
a(26) = 55837783597462913 + 25*62121807*223092870 = 402311088927865163 is prime.
Links
- Jens Kruse Andersen, All known AP24 to AP26.
- B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547.
- PrimeGrid, AP26 Search.
- Eric Weisstein's World of Mathematics, Prime Arithmetic Progression.
- Wikipedia, Primes in arithmetic progression.
Programs
-
GAP
List([1..25],n->55837783597462913+(n-1)*13858932213216090); # Muniru A Asiru, Jul 24 2018
-
Maple
seq(55837783597462913+(n-1)*13858932213216090,n=1..15); # Muniru A Asiru, Jul 24 2018
-
Mathematica
Table[55837783597462913 + (n - 1) 13858932213216090, {n, 1, 25}]
Formula
a(n) = 455837783597462913 + a(n-1)*62121807*23#, where 23# := 2*3*5*7*11*13*17*19*23 = 223092870.
Comments