A246292
Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.
Original entry on oeis.org
1, 1, 3, 120, 151200, 10897286400, 70959641905152000, 60493719168990845337600000, 9226024969987629401488081551360000000, 329646772667218349211759153151614073700352000000000, 3498788402132461399351052923160966975192989707740695756800000000000
Offset: 0
A317166
Number of permutations of [n] with distinct lengths of increasing runs.
Original entry on oeis.org
1, 1, 1, 5, 7, 27, 241, 505, 1975, 10241, 188743, 460545, 2323679, 10836141, 85023209, 2734858573, 8010483015, 45714797671, 243112435345, 1632532938001, 15831051353773, 892173483721887, 2978105991739613, 19855526019022967, 113487352591708591
Offset: 0
-
g:= (n, s)-> `if`(n in s, 0, 1):
b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
`if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
, j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
end:
a:= n-> b(n, 0$2, {}):
seq(a(n), n=0..24);
-
g[n_, s_] := If[MemberQ[s, n], 0, 1];
b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
{j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
a[n_] := b[n, 0, 0, {}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)
A317273
Number of permutations of [n*(n+1)/2] whose lengths of increasing runs are the positive integers from 1 to n.
Original entry on oeis.org
1, 1, 4, 202, 163692, 2487100956, 832252747110528, 7116720347983770858600, 1776529280247277318394451118272, 14580103976468323893693256154922439405632, 4377460729080839690885111988468699720430287682744896, 52959485251272238069446517666752040946228209263610778166878160384
Offset: 0
-
g:= (n, s)-> `if`(n in s, 1, 0):
b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
`if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s minus {t})
, j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
end:
a:= n-> b(n*(n+1)/2, 0$2, {$0..n}):
seq(a(n), n=0..10);
-
g[n_, s_] := If[MemberQ[s, n], 1, 0];
b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Complement~ {t}],
{j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
a[n_] := b[n(n+1)/2, 0, 0, Range[0, n]];
Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)
Showing 1-3 of 3 results.