cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246292 Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.

Original entry on oeis.org

1, 1, 3, 120, 151200, 10897286400, 70959641905152000, 60493719168990845337600000, 9226024969987629401488081551360000000, 329646772667218349211759153151614073700352000000000, 3498788402132461399351052923160966975192989707740695756800000000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n+1, 2)!/n!:
    seq(a(n), n=0..12);

Formula

a(n) = C(n+1,2)! / n!.
a(n) = A218868(n*(n+1)/2,n) = A218868(A000217(n),n).
a(n) = A242027(n*(n+1)/2,n) = A242027(A000217(n),n).
a(n) = A022915(n) * A000178(n-1) for n>0.

A317166 Number of permutations of [n] with distinct lengths of increasing runs.

Original entry on oeis.org

1, 1, 1, 5, 7, 27, 241, 505, 1975, 10241, 188743, 460545, 2323679, 10836141, 85023209, 2734858573, 8010483015, 45714797671, 243112435345, 1632532938001, 15831051353773, 892173483721887, 2978105991739613, 19855526019022967, 113487352591708591
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= (n, s)-> `if`(n in s, 0, 1):
    b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
          `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
           , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
        end:
    a:= n-> b(n, 0$2, {}):
    seq(a(n), n=0..24);
  • Mathematica
    g[n_, s_] := If[MemberQ[s, n], 0, 1];
    b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
         If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
         {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
    a[n_] := b[n, 0, 0, {}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)

Formula

a(A000217(n)) = A317165(n).

A317273 Number of permutations of [n*(n+1)/2] whose lengths of increasing runs are the positive integers from 1 to n.

Original entry on oeis.org

1, 1, 4, 202, 163692, 2487100956, 832252747110528, 7116720347983770858600, 1776529280247277318394451118272, 14580103976468323893693256154922439405632, 4377460729080839690885111988468699720430287682744896, 52959485251272238069446517666752040946228209263610778166878160384
Offset: 0

Views

Author

Alois P. Heinz, Jul 25 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= (n, s)-> `if`(n in s, 1, 0):
    b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
          `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s minus {t})
           , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
        end:
    a:= n-> b(n*(n+1)/2, 0$2, {$0..n}):
    seq(a(n), n=0..10);
  • Mathematica
    g[n_, s_] := If[MemberQ[s, n], 1, 0];
    b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
         If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Complement~ {t}],
         {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
    a[n_] := b[n(n+1)/2, 0, 0, Range[0, n]];
    Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)

Formula

a(n) = A317327(A000217(n),n).
a(n) <= A317165(n).
Showing 1-3 of 3 results.