A317166 Number of permutations of [n] with distinct lengths of increasing runs.
1, 1, 1, 5, 7, 27, 241, 505, 1975, 10241, 188743, 460545, 2323679, 10836141, 85023209, 2734858573, 8010483015, 45714797671, 243112435345, 1632532938001, 15831051353773, 892173483721887, 2978105991739613, 19855526019022967, 113487352591708591
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..66
Programs
-
Maple
g:= (n, s)-> `if`(n in s, 0, 1): b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s), `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t}) , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o)) end: a:= n-> b(n, 0$2, {}): seq(a(n), n=0..24);
-
Mathematica
g[n_, s_] := If[MemberQ[s, n], 0, 1]; b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s], If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}], {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)