cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317175 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the least m > 0 such that m * n contains k as a substring in its decimal representation.

Original entry on oeis.org

1, 5, 2, 4, 1, 3, 3, 4, 15, 4, 2, 3, 1, 2, 5, 2, 4, 8, 8, 25, 6, 2, 2, 6, 1, 5, 3, 7, 2, 3, 5, 8, 13, 2, 35, 8, 2, 3, 5, 4, 1, 4, 9, 4, 9, 1, 3, 4, 2, 9, 12, 18, 6, 45, 10, 1, 2, 4, 3, 5, 1, 14, 2, 3, 5, 11, 1, 2, 3, 5, 7, 8, 12, 16, 23, 34, 55, 12, 1, 1, 3, 4
Offset: 1

Views

Author

Rémy Sigrist, Jul 23 2018

Keywords

Comments

This sequence is well defined: for any n > 0 and k > 0:
- ceiling(k * 10^A055642(n)/n) * n starts with k,
- hence T(n, k) <= ceil(k * 10^A055642(n)/n) <= 10 * k,
- and every column is bounded,
- the conjectured maximum values for the first 9 columns are: 5, 12, 17, 32, 25, 24, 35, 32, 72.

Examples

			Array T(n, k) begins:
  n\k|    1    2    3    4    5    6    7    8    9   10   11   12
  ---+------------------------------------------------------------
    1|    1    2    3    4    5    6    7    8    9   10   11   12
    2|    5    1   15    2   25    3   35    4   45    5   55    6
    3|    4    4    1    8    5    2    9    6    3   34   37    4
    4|    3    3    8    1   13    4   18    2   23   25   28    3
    5|    2    4    6    8    1   12   14   16   18    2   22   24
    6|    2    2    5    4    9    1   12    3   15   17   19    2
    7|    2    3    5    2    5    8    1    4    7   15   16   16
    8|    2    3    4    3    7    2    9    1   12   13   14   14
    9|    2    3    4    5    5    4    3    2    1   12   13   14
   10|    1    2    3    4    5    6    7    8    9    1   11   12
		

Crossrefs

Programs

  • PARI
    T(n, k, base=10) = { my (w=base^#digits(k, base)); for (m=1, oo, my (mn=m*n); while (mn >= k, if (mn % w == k, return (m), mn \= base))) }

Formula

T(1, k) = k.
T(n, n) = 1.
T(n, 1) = A317173(n).

A317180 a(n) is the least positive multiple of n that contains at least one digit 1 in its decimal representation.

Original entry on oeis.org

1, 10, 12, 12, 10, 12, 14, 16, 18, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 100, 21, 110, 115, 120, 100, 104, 81, 112, 116, 120, 31, 128, 132, 102, 105, 108, 111, 114, 117, 120, 41, 126, 129, 132, 135, 138, 141, 144, 147, 100, 51, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Rémy Sigrist, Jul 23 2018

Keywords

Examples

			The multiples of 3 are: 3, 6, 9, 12, 15, etc.; 12 is the first one containing the digit 1, hence a(3) = 12.
		

Crossrefs

Programs

  • Mathematica
    on1[n_]:=Module[{k=1},While[DigitCount[k*n,10,1]<1,k++];k*n]; Array[on1,60] (* Harvey P. Dale, Apr 09 2022 *)
  • PARI
    a(n) = forstep (m=n, oo, n, if (setsearch(Set(digits(m)), 1), return (m)))

Formula

a(n) = n * A317173(n).
a(n) <= A187285(n).

Extensions

Definition clarified by Harvey P. Dale, Apr 09 2022

A319542 Record values in A039932.

Original entry on oeis.org

1, 51, 531, 2571, 15703, 90271, 102053, 530102, 4550102, 4570102, 4580102, 22900501, 134003006, 1002003005, 5001002003, 5003001002, 30005001002, 30005002001, 200030005001, 1000200030005, 5000100020003, 5000300010002
Offset: 1

Views

Author

David Radcliffe, Sep 22 2018

Keywords

Comments

The positive integer n belongs to the sequence iff there exists a positive integer k so that each of the first k multiples of n contains the decimal digit 1, but no smaller n has this property for the same value of k.

Examples

			51 is a term because the first three multiples of 51 (51, 102, 153) all contain the digit 1, and 51 is the least positive integer with this property.
		

Crossrefs

Cf. A319548, A039932, A317173. Subset of A011531.

A381530 a(n) is the least k > 0 such that n / k contains a digit 1 in its decimal representation.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 4, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 1, 2, 2, 4, 4, 4, 4, 5, 5, 5, 1, 5, 3, 3, 3, 5, 5, 5, 5, 1
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 26 2025

Keywords

Examples

			n = 7:
7/1 = 7
7/2 = 3.5
7/3 = 2.33...
7/4 = 1.75 contains a digit 1, thus a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1}, While[FreeQ[RealDigits[n/k][[1]], 1], k++]; k]; Array[a, 100] (* Amiram Eldar, Feb 26 2025 *)
Showing 1-4 of 4 results.