cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317239 Number of partitions of n into distinct parts with an even sum of Hamming weights.

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 3, 0, 4, 6, 3, 6, 9, 6, 12, 19, 9, 19, 31, 17, 37, 44, 29, 62, 68, 55, 91, 104, 92, 140, 162, 134, 217, 245, 207, 329, 343, 323, 489, 497, 489, 686, 726, 731, 980, 1040, 1036, 1400, 1477, 1491, 1970, 2038, 2139, 2744, 2835, 3016, 3752, 3939
Offset: 0

Views

Author

Alois P. Heinz, Jul 24 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 0, irem(n, 2, 'q')+h(q)) end:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(n$2, 1):
    seq(a(n), n=0..100);
  • Mathematica
    h[n_] := h[n] = If[n == 0, 0, Mod[n, 2] + h[Quotient[n, 2]]];
    b[n_, i_, t_] := b[n, i, t] = If[i(i+1)/2 < n, 0, If[n == 0, t, b[n, i - 1, t] + b[n - i, Min[n - i, i - 1], Mod[t + h[i], 2]]]];
    a[n_] := b[n, n, 1];
    a /@ Range[0, 100](* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)

Formula

a(n) + A316996(n) = A000009(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 09 2018