cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317245 Number of supernormal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 1, 3, 3, 4, 2, 4, 5, 6, 6, 10, 7, 10, 9, 9, 10, 11, 12, 12, 21, 12, 18, 17, 21, 19, 28, 23, 28, 26, 27, 24, 32, 29, 36, 34, 46, 42, 55, 48, 65, 65, 74, 70, 88, 81, 83, 103, 112, 129, 153, 157, 190, 205, 210, 242, 283, 276, 321
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			The a(10) = 4 supernormal integer partitions are (4321), (33211), (322111), (1111111111).
The a(21) = 10 supernormal integer partitions:
  (654321),
  (4443321),
  (44432211), (44333211), (44332221),
  (4432221111), (4333221111), (4332222111),
  (433322211),
  (111111111111111111111).
		

Crossrefs

Programs

  • Mathematica
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Table[Length[Select[IntegerPartitions[n],supnrm]],{n,0,30}]