cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317301 Sequence obtained by taking the general formula for generalized k-gonal numbers: m*((k - 2)*m - k + 4)/2, where m = 0, +1, -1, +2, -2, +3, -3, ... and k >= 5. Here k = 1.

Original entry on oeis.org

0, 1, -2, 1, -5, 0, -9, -2, -14, -5, -20, -9, -27, -14, -35, -20, -44, -27, -54, -35, -65, -44, -77, -54, -90, -65, -104, -77, -119, -90, -135, -104, -152, -119, -170, -135, -189, -152, -209, -170, -230, -189, -252, -209, -275, -230, -299, -252, -324, -275, -350, -299, -377, -324, -405, -350, -434
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2018

Keywords

Comments

Taking the same formula with k = 0 we have A317300.
Taking the same formula with k = 2 we have A001057 (canonical enumeration of integers).
Taking the same formula with k = 3 we have 0 together with A008795 (Molien series for 3-dimensional representation of dihedral group D_6 of order 6).
Taking the same formula with k = 4 we have A008794 (squares repeated) except the initial zero.
Taking the same formula with k >= 5 we have the generalized k-gonal numbers (see Crossrefs section).

Crossrefs

Row 1 of A303301.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    /* By definition: */ k:=1; [0] cat [m*i*((k-2)*m*i-k+4)/2: i in [1,-1], m in [1..30]]; // Bruno Berselli, Jul 30 2018
    
  • Mathematica
    Table[(-2 n (n + 1) - 5 (2 n + 1) (-1)^n + 5)/16, {n, 0, 60}] (* Bruno Berselli, Jul 30 2018 *)
  • PARI
    concat(0, Vec(x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^50))) \\ Colin Barker, Aug 01 2018

Formula

From Bruno Berselli, Jul 30 2018: (Start)
O.g.f.: x*(1 - 3*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (-5*(1 + 2*x) + (5 - 2*x^2)*exp(2*x))*exp(-x)/16.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (-2*n*(n + 1) - 5*(2*n + 1)*(-1)^n + 5)/16. Therefore:
a(n) = -n*(n + 6)/8 for even n;
a(n) = -(n - 5)*(n + 1)/8 for odd n. Also:
a(n) = a(n-5) for odd n > 3.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) + n*(n^2 - 3) = 0. (End)