A317308 Primes p such that the largest Dyck path of the symmetric representation of sigma(p) has a central peak.
2, 7, 17, 19, 29, 31, 47, 53, 67, 71, 73, 97, 101, 103, 127, 131, 157, 163, 167, 191, 193, 197, 199, 233, 239, 241, 251, 277, 281, 283, 293, 331, 337, 347, 349, 379, 383, 389, 397, 401, 439, 443, 449, 457, 461, 463, 499, 503, 509, 521, 523, 563, 569, 571, 577, 587, 593, 631, 641, 643, 647, 653, 659, 661
Offset: 1
Keywords
Examples
Illustration of initial terms: -------------------------------------------------------- p sigma(p) Diagram of the symmetry of sigma -------------------------------------------------------- _ _ _ _ _| | | | | | | | 2 3 |_ _| | | | | | | | | | | | | _|_| | | | | _| | | | | _ _ _ _| | | | | 7 8 |_ _ _ _| | | | | | | | | _ _ _|_| | | | _ _ _|_| _| | _| _ _| _ _| _| | | | _ _| _ _ _ _ _ _ _ _ _| | 17 18 |_ _ _ _ _ _ _ _ _| | _ _ _ _ _ _ _ _ _ _| 19 20 |_ _ _ _ _ _ _ _ _ _| . For the first four terms of the sequence we can see in the above diagram that the largest Dyck path of the symmetric representation of sigma(p) has a central peak. Compare with A317309.
Links
- Omar E. Pol, Perspective view of the pyramid (first 16 levels)
Comments