A317309 Primes p such that the largest Dyck path of the symmetric representation of sigma(p) has a central valley.
3, 5, 11, 13, 23, 37, 41, 43, 59, 61, 79, 83, 89, 107, 109, 113, 137, 139, 149, 151, 173, 179, 181, 211, 223, 227, 229, 257, 263, 269, 271, 307, 311, 313, 317, 353, 359, 367, 373, 409, 419, 421, 431, 433, 467, 479, 487, 491, 541, 547, 557, 599, 601, 607, 613, 617, 619, 673, 677, 683, 691, 701
Offset: 1
Keywords
Examples
Illustration of initial terms: ------------------------------------------------- p sigma(p) Diagram of the symmetry of sigma ------------------------------------------------- _ _ _ _ | | | | | | | | _ _|_| | | | | | | 3 4 |_ _| _|_| | | | | _ _ _| | | | | 5 6 |_ _ _| | | | | _ _|_| | | _| _ _|_| _| | | _| _ _ _ _ _ _| _ _| 11 12 |_ _ _ _ _ _| | _ _ _ _ _ _ _| 13 14 |_ _ _ _ _ _ _| . For the first four terms of the sequence we can see in the above diagram that the largest Dyck path of the symmetric representation of sigma(p) has a central valley. Compare with A317308.
Links
- Omar E. Pol, Perspective view of the pyramid (first 16 levels)
Crossrefs
Primes in A161983.
Except for the first term 3, primes in A317304.
Primes of the triangle of A060300. - César Aguilera, Nov 12 2020
Programs
-
Python
from sympy import isprime for x in range(1,100): for x in range(2*x**2+2*x-(2*x//2),2*x**2+2*x+(2*x//2)+1): if isprime(x): print(x, end=', ') # César Aguilera, Nov 12 2020
Comments