A317322 Multiples of 22 and odd numbers interleaved.
0, 1, 22, 3, 44, 5, 66, 7, 88, 9, 110, 11, 132, 13, 154, 15, 176, 17, 198, 19, 220, 21, 242, 23, 264, 25, 286, 27, 308, 29, 330, 31, 352, 33, 374, 35, 396, 37, 418, 39, 440, 41, 462, 43, 484, 45, 506, 47, 528, 49, 550, 51, 572, 53, 594, 55, 616, 57, 638, 59, 660, 61, 682, 63, 704, 65, 726, 67, 748, 69
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Mathematica
Module[{nn=40},Riffle[22Range[0,nn],Range[1,2nn,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,22,3},80] (* Harvey P. Dale, Dec 12 2021 *)
-
PARI
concat(0, Vec(x*(1 + 22*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
Formula
a(2n) = 22*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 22*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 11*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 5*2^(2-s)). - Amiram Eldar, Oct 26 2023
Comments