cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317326 Multiples of 26 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 26, 3, 52, 5, 78, 7, 104, 9, 130, 11, 156, 13, 182, 15, 208, 17, 234, 19, 260, 21, 286, 23, 312, 25, 338, 27, 364, 29, 390, 31, 416, 33, 442, 35, 468, 37, 494, 39, 520, 41, 546, 43, 572, 45, 598, 47, 624, 49, 650, 51, 676, 53, 702, 55, 728, 57, 754, 59, 780, 61, 806, 63, 832, 65, 858, 67, 884, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

a(n) is the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 30-gonal numbers (A316729).
Partial sums give the generalized 30-gonal numbers.
More generally, the partial sums of the sequence formed by the multiples of m and the odd numbers interleaved, give the generalized k-gonal numbers, with m >= 1 and k = m + 4.
From Bruno Berselli, Jul 27 2018: (Start)
Also, this type of sequence is characterized by:
O.g.f.: x*(1 + m*x + x^2)/(1 - x^2)^2;
E.g.f.: x*(2 - m + (2 + m)*exp(2*x))*exp(-x)/4;
a(n) = -a(-n) = (2 + m - (2 - m)*(-1)^n)*n/4;
a(n) = (m/2)^((1 + (-1)^n)/2)*n;
a(n) = 2*a(n-2) - a(n-4), with signature (0,2,0,-1). (End)

Crossrefs

Cf. A252994 and A005408 interleaved.
Column 26 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14), A317311 (k=15), A317312 (k=16), A317313 (k=17), A317314 (k=18), A317315 (k=19), A317316 (k=20), A317317 (k=21), A317318 (k=22), A317319 (k=23), A317320 (k=24), A317321 (k=25), A317322 (k=26), A317323 (k=27), A317324 (k=28), A317325 (k=29), this sequence (k=30).
Cf. A316729.

Programs

  • Julia
    [13^div(1+(-1)^n,2)*n for n in 0:70] |> println # Bruno Berselli, Jul 28 2018
  • Mathematica
    Table[(7 + 6 (-1)^n) n, {n, 0, 70}] (* Bruno Berselli, Jul 27 2018 *)

Formula

a(2*n) = 26*n, a(2*n+1) = 2*n + 1.
From Bruno Berselli, Jul 27 2018: (Start)
O.g.f.: x*(1 + 26*x + x^2)/(1 - x^2)^2.
E.g.f.: x*(-6 + 7*exp(2*x))*exp(-x).
a(n) = -a(-n) = (7 + 6*(-1)^n)*n.
a(n) = 13^((1 + (-1)^n)/2)*n.
a(n) = 2*a(n-2) - a(n-4). (End)
Multiplicative with a(2^e) = 13*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 3*2^(3-s)). - Amiram Eldar, Oct 26 2023