cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317329 Number of permutations of [n] with equal lengths of increasing runs.

Original entry on oeis.org

1, 2, 2, 7, 2, 82, 2, 1456, 1515, 50774, 2, 3052874, 2, 199364414, 136835794, 19451901825, 2, 2510158074714, 2, 370671075758054, 132705620239756, 69348874393843334, 2, 15772160279898993782, 613498040952503, 4087072509293134292962, 705927677748508225534
Offset: 1

Views

Author

Alois P. Heinz, Jul 25 2018

Keywords

Examples

			a(4) = 7: 1234, 1324, 1423, 2314, 2413, 3412, 4321.
		

Crossrefs

Column k=1 of A317327.

Programs

  • Maple
    b:= proc(u, o, t, d) option remember; `if`(u+o=0, 1,
          `if`(t=d, add(b(u-j, o+j-1, 1, d), j=1..u),
           add(b(u+j-1, o-j, t+1, d), j=1..o)))
        end:
    a:= proc(n) option remember; `if`(n=1, 1, 2+add(
          b(n, 0, d$2), d=numtheory[divisors](n) minus {1, n}))
        end:
    seq(a(n), n=1..35);
  • Mathematica
    b[u_, o_, t_, d_] := b[u, o, t, d] = If[u + o == 0, 1,
         If[t == d, Sum[b[u - j, o + j - 1, 1, d], {j, 1, u}],
         Sum[b[u + j - 1, o - j, t + 1, d], {j, 1, o}]]];
    a[n_] := a[n] = If[n == 1, 1, 2 + Sum[b[n, 0, d, d], {d, Divisors[n] ~Complement~ {1, n}}]];
    Array[a, 35] (* Jean-François Alcover, Aug 01 2021, after Alois P. Heinz *)

Formula

a(n) = 2 <=> n in { A000040 }.