A317338 O.g.f. A(x) satisfies: [x^n] exp( n*x*A(x) ) * (n+1 - n*A(x)) = 0 for n >= 1.
1, 1, 0, -3, -5, 10, 58, 23, -557, -1421, 4094, 28316, -52, -449150, -970286, 5908939, 31046627, -49583353, -750617284, -544416915, 15819383275, 46795708732, -288245326872, -1808819140124, 3784215933076, 57664747490276, 14416027504376, -1664155475303224, -3937904190952656, 43893853942734810, 219165998056699650
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x - 3*x^3 - 5*x^4 + 10*x^5 + 58*x^6 + 23*x^7 - 557*x^8 - 1421*x^9 + 4094*x^10 + 28316*x^11 - 52*x^12 - 449150*x^13 - 970286*x^14 + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in exp( n*x*A(x) ) * (n+1 - n*A(x)) begins: n=1: [1, 0, 1, 16, 117, -704, -35075, -200304, 17660041, ...]; n=2: [1, 0, 0, 20, 288, 912, -51200, -888480, 19165440, ...]; n=3: [1, 0, -3, 0, 333, 3888, -27135, -1471824, 4665465, ...]; n=4: [1, 0, -8, -56, 0, 5344, 33280, -1317312, -15647744, ...]; n=5: [1, 0, -15, -160, -1035, 0, 81325, -180000, -25008375, ...]; n=6: [1, 0, -24, -324, -3168, -20304, 0, 1156896, -10209024, ...]; n=7: [1, 0, -35, -560, -6867, -67088, -422975, 0, 19205305, ...]; n=8: [1, 0, -48, -880, -12672, -155712, -1525760, -9408384, 0, ...]; n=9: [1, 0, -63, -1296, -21195, -305856, -3806595, -37346832, -230393079, 0, ...]; ... in which the coefficients of x^n in row n form a diagonal of zeros.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..400
Programs
-
PARI
{a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)*x*Ser(A) ) * (m - (m-1)*Ser(A)) )[m]/(m-1) ); A[n+1]} for(n=0, 30, print1(a(n), ", "))
Comments