cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317384 Smallest positive integer that has exactly n representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of (not necessarily distinct) primes.

Original entry on oeis.org

2, 1, 13, 31, 43, 91, 111, 231, 175, 274, 351, 471, 703, 526, 463, 931, 823, 1723, 1579, 1279, 1903, 2083, 1791, 2143, 2227, 2443, 2671, 2781, 2335, 3807, 3163, 3631, 3199, 4243, 5314, 5482, 5107, 4671, 6231, 6681, 8863, 7483, 6111, 6331, 7879, 8031, 8023, 9351
Offset: 0

Views

Author

Alois P. Heinz, Jul 26 2018

Keywords

Examples

			a(1) = 1: 1.
a(2) = 13: 1 + 2 * (1 + 5) = 1 + 3 * (1 + 3) = 13.
a(3) = 31: 1 + 2 * (1 + 2 * (1 + 2 * (1 + 2))) = 1 + 3 * (1 + 3 * (1 + 2)) = 1 + 5 * (1 + 5) = 31.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 1,
          add(b((n-1)/p), p=numtheory[factorset](n-1)))
        end:
    a:= proc(n) option remember; local k;
          for k while n<>b(k) do od; k
        end:
    seq(a(n), n=0..50);
  • Mathematica
    pp[n_] := pp[n] = FactorInteger[n][[All, 1]];
    q[n_] := q[n] = Switch[n, 1, True, 2, False, _, AnyTrue[pp[n-1], q[(n-1)/#]&]];
    b[n_] := b[n] = Which[n == 1, 1, ! q[n], 0, True, Sum[b[(n-1)/p], {p, pp[n-1]}]];
    a[n_] := Module[{k}, For[k = 1, True, k++, If[n == b[k], Return[k]]]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 07 2023, after Alois P. Heinz *)

Formula

a(n) = min { j > 0 : A317240(j) = n }.