A317385 Smallest positive integer that has exactly n representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
2, 1, 25, 43, 211, 638, 664, 1613, 2991, 7021, 11306, 9439, 17361, 23230, 40886, 38341, 49063, 36583, 99111, 111229, 110631, 171718, 233451, 255531, 309141, 327643, 369519, 521266, 489406, 738544, 682690, 812826, 1048594, 1015096, 2003002, 2118439, 1602360, 2204907, 2850772, 2702743, 2794198
Offset: 0
Keywords
Examples
a(1) = 1: 1. a(2) = 25: 1 + 2 * (1 + 11) = 1 + 3 * (1 + 7) = 25. a(3) = 43: 1 + 2 * (1 + 5 * (1 + 3)) = 1 + 3 * (1 + 13) = 1 + 7 * (1 + 5) = 43.
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=1, 1, add(b((n-1)/p , s union {p}), p=numtheory[factorset](n-1) minus s)) end: a:= proc(n) option remember; local k; for k while n<>b(k, {}) do od; k end: seq(a(n), n=0..15);
-
Mathematica
b[n_, s_] := b[n, s] = If[n == 1, 1, Sum[If[p == 1, 0, b[(n - 1)/p, s~Union~{p}]], {p, FactorInteger[n - 1][[All, 1]]~Complement~s}]]; A[n_, k_] := Module[{h, p, q = 0}, p[_] = {}; While[Length[p[k]] < n, q++; h = b[q, {}]; p[h] = Append[p[h], q]]; p[k][[n]]]; a[k_] := If[k == 0, 2, A[1, k]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz in A317390 *)
Formula
a(n) = min { j > 0 : A317241(j) = n }.