A317392 Positive integers that have exactly two representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
25, 29, 37, 40, 41, 49, 51, 52, 67, 71, 77, 85, 87, 88, 89, 97, 103, 112, 115, 123, 125, 126, 127, 130, 137, 139, 145, 146, 148, 149, 155, 157, 161, 169, 175, 181, 183, 186, 191, 199, 202, 209, 214, 217, 222, 223, 229, 232, 235, 238, 239, 241, 243, 248, 249
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<3 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<3, r, 3) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>2 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 2.