A317394 Positive integers that have exactly four representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
211, 261, 421, 426, 441, 484, 535, 540, 591, 621, 634, 667, 683, 691, 715, 726, 732, 761, 771, 776, 778, 794, 818, 853, 862, 871, 925, 970, 979, 987, 989, 1011, 1021, 1023, 1038, 1074, 1086, 1105, 1114, 1141, 1171, 1176, 1184, 1190, 1197, 1222, 1261, 1266
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<5 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<5, r, 5) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>4 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 4.