A317395 Positive integers that have exactly five representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
638, 848, 921, 969, 1002, 1026, 1106, 1156, 1191, 1248, 1276, 1310, 1326, 1341, 1431, 1444, 1480, 1499, 1548, 1592, 1641, 1730, 1764, 1772, 1786, 1856, 1888, 1911, 1996, 2005, 2025, 2038, 2050, 2053, 2061, 2121, 2129, 2131, 2133, 2146, 2171, 2224, 2256, 2258
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<6 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<6, r, 6) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>5 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 5.