A317396 Positive integers that have exactly six representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
664, 1956, 2058, 2092, 2094, 2283, 2381, 2388, 2432, 2466, 2533, 2624, 2701, 2775, 2822, 2853, 2976, 3070, 3193, 3220, 3316, 3326, 3436, 3442, 3461, 3485, 3529, 3568, 3571, 3576, 3620, 3746, 3784, 3785, 3797, 3826, 3839, 3913, 4005, 4026, 4031, 4213, 4234
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<7 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<7, r, 7) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>6 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 6.