A317398 Positive integers that have exactly eight representations of the form 1 + p1 * (1 + p2* ... * (1 + p_j)...), where [p1, ..., p_j] is a (possibly empty) list of distinct primes.
2991, 3004, 3319, 3554, 3928, 4846, 5552, 5886, 6293, 6784, 7183, 7286, 7396, 7668, 7741, 7743, 7829, 7996, 8095, 8121, 8212, 8477, 8586, 8614, 8856, 8861, 9096, 9307, 9374, 9591, 9626, 9636, 9637, 9721, 9738, 9845, 9891, 9912, 9934, 10011, 10024, 10048, 10251
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
b:= proc(n, s) option remember; local p, r; if n=1 then 1 else r:=0; for p in numtheory[factorset](n-1) minus s while r<9 do r:= r+b((n-1)/p, s union {p}) od; `if`(r<9, r, 9) fi end: a:= proc(n) option remember; local k; for k from `if`(n=1, 1, 1+a(n-1)) while b(k, {})<>8 do od; k end: seq(a(n), n=1..100);
Formula
A317241(a(n)) = 8.